Xuanjun Zhou


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
The NiuTrans Machine Translation Systems for WMT21
Shuhan Zhou | Tao Zhou | Binghao Wei | Yingfeng Luo | Yongyu Mu | Zefan Zhou | Chenglong Wang | Xuanjun Zhou | Chuanhao Lv | Yi Jing | Laohu Wang | Jingnan Zhang | Canan Huang | Zhongxiang Yan | Chi Hu | Bei Li | Tong Xiao | Jingbo Zhu
Proceedings of the Sixth Conference on Machine Translation

This paper describes NiuTrans neural machine translation systems of the WMT 2021 news translation tasks. We made submissions to 9 language directions, including English2Chinese, Japanese, Russian, Icelandic and English2Hausa tasks. Our primary systems are built on several effective variants of Transformer, e.g., Transformer-DLCL, ODE-Transformer. We also utilize back-translation, knowledge distillation, post-ensemble, and iterative fine-tuning techniques to enhance the model performance further.

2020

pdf bib
The NiuTrans Machine Translation Systems for WMT20
Yuhao Zhang | Ziyang Wang | Runzhe Cao | Binghao Wei | Weiqiao Shan | Shuhan Zhou | Abudurexiti Reheman | Tao Zhou | Xin Zeng | Laohu Wang | Yongyu Mu | Jingnan Zhang | Xiaoqian Liu | Xuanjun Zhou | Yinqiao Li | Bei Li | Tong Xiao | Jingbo Zhu
Proceedings of the Fifth Conference on Machine Translation

This paper describes NiuTrans neural machine translation systems of the WMT20 news translation tasks. We participated in Japanese<->English, English->Chinese, Inuktitut->English and Tamil->English total five tasks and rank first in Japanese<->English both sides. We mainly utilized iterative back-translation, different depth and widen model architectures, iterative knowledge distillation and iterative fine-tuning. And we find that adequately widened and deepened the model simultaneously, the performance will significantly improve. Also, iterative fine-tuning strategy we implemented is effective during adapting domain. For Inuktitut->English and Tamil->English tasks, we built multilingual models separately and employed pretraining word embedding to obtain better performance.