Xiyue Zhu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Turbocharging Web Automation: The Impact of Compressed History States
Xiyue Zhu | Peng Tang | Haofu Liao | Srikar Appalaraju
Findings of the Association for Computational Linguistics: ACL 2025

Language models have led to leap forward in web automation. The current web automation approaches take the current web state, history actions, and language instruction as inputs to predict the next action, overlooking the importance of history states. However, the highly verbose nature of web page states can result in long input sequence and sparse information, hampering the effective utilization of history states. In this paper, we propose a novel web history compressor approach to turbocharge web automation using history states. Our approach employs a history compressor module that distills the most task-relevant information from each history state into a fixed-length short representation, mitigating the challenges posed by the highly verbose history states. Experiments are conducted on the Mind2Web and WebLINX datasets to evaluate the effectiveness of our approach. Results show that our approach obtains 1.2-5.4% absolute accuracy improvements compared to the baseline approach without history inputs.