This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
XiyuanDu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) encode vast world knowledge but struggle to stay up-to-date, often leading to errors and hallucinations. Knowledge editing offers an efficient alternative to retraining, enabling targeted modifications by updating specific model parameters. However, existing methods primarily focus on individual models, posing challenges in efficiently updating multiple models and adapting to new models. To address this, we propose OnceEdit, a novel ensemble-based approach that employs a plug-in model as the editing module, enabling stable knowledge updates across multiple models. Building on the model ensemble, OnceEdit introduces two key mechanisms to enhance its effectiveness. First, we introduce a dynamic weight mechanism through a weight token for distinguishing between edit-related and non-edit-related instances, ensuring the appropriate utilization of knowledge from integrated models. Second, we incorporate an ensemble enhancement mechanism to mitigate the excessive reliance on the central model inherent in the model ensemble technique, making it more suitable for knowledge editing. Extensive experiments on diverse LLMs demonstrate that OnceEdit consistently outperforms existing methods while achieving superior editing efficiency. Further analysis confirms its adaptability and stability in multi-model editing scenarios.
Retrieval-augmented generation integrates the capabilities of large language models with relevant information retrieved from an extensive corpus, yet encounters challenges when confronted with real-world noisy data. One recent solution is to train a filter module to find relevant content but only achieve suboptimal noise compression. In this paper, we propose to introduce the information bottleneck theory into retrieval-augmented generation. Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output, while minimizing the mutual information between compression and retrieved passage. In addition, we derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations, the selection of supervised fine-tuning data, and the construction of reinforcement learning rewards. Experimental results demonstrate that our approach achieves significant improvements across various question answering datasets, not only in terms of the correctness of answer generation but also in the conciseness with 2.5% compression rate.
Large language models (LLMs) have demonstrated strong reasoning capabilities.Nevertheless, they still suffer from factual errors when tackling knowledge-intensive tasks.Retrieval-augmented reasoning represents a promising approach.However, significant challenges still persist, including inaccurate and insufficient retrieval for complex questions, as well as difficulty in integrating multi-source knowledge.To address this, we propose Beam Aggregation Reasoning (BeamAggR), a reasoning framework for knowledge-intensive multi-hop QA.BeamAggR explores and prioritizes promising answers at each hop of question.Concretely, we parse the complex questions into trees, which include atom and composite questions, followed by bottom-up reasoning.For atomic questions, the LLM conducts reasoning on multi-source knowledge to get answer candidates.For composite questions, the LLM combines beam candidates, explores multiple reasoning paths through probabilistic aggregation, and prioritizes the most promising trajectory.Extensive experiments on four open-domain multi-hop reasoning datasets show that our method significantly outperforms SOTA methods by 8.5%.Furthermore, our analysis reveals that BeamAggR elicits better knowledge collaboration and answer aggregation.