Xiuyu Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
S*: Test Time Scaling for Code Generation
Dacheng Li | Shiyi Cao | Chengkun Cao | Xiuyu Li | Shangyin Tan | Kurt Keutzer | Jiarong Xing | Joseph E. Gonzalez | Ion Stoica
Findings of the Association for Computational Linguistics: EMNLP 2025

Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* augments the existing parallel scaling approach with sequential scaling to further increase the performance. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions.We evaluate S* across 12 Large Language Models and Large Reasoning Models and show that: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models—GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models—DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Codes, model generations and intermediate experiments results are available under Codes, model generations and intermediate ex-periments results are available under https://github.com/NovaSky-AI/SkyThought.

2024

pdf bib
LLoCO: Learning Long Contexts Offline
Sijun Tan | Xiuyu Li | Shishir G Patil | Ziyang Wu | Tianjun Zhang | Kurt Keutzer | Joseph E. Gonzalez | Raluca Ada Popa
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose LLoCO, a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning with LoRA. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using 30 × fewer tokens during inference. LLoCO achieves up to 7.62 × speed-up during inference and 11.52 × higher throughput during finetuning, substantially reduces the cost of long document question answering. This makes it a promising solution for efficient long context processing.