This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
XiruoDing
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Deep transformer models have been used to detect linguistic anomalies in patient transcripts for early Alzheimer’s disease (AD) screening. While pre-trained neural language models (LMs) fine-tuned on AD transcripts perform well, little research has explored the effects of the gender of the speakers represented by these transcripts. This work addresses gender confounding in dementia detection and proposes two methods: the Extended Confounding Filter and the Dual Filter, which isolate and ablate weights associated with gender. We evaluate these methods on dementia datasets with first-person narratives from patients with cognitive impairment and healthy controls. Our results show transformer models tend to overfit to training data distributions. Disrupting gender-related weights results in a deconfounded dementia classifier, with the trade-off of slightly reduced dementia detection performance.
There is growing evidence that mobile text message exchanges between patients and therapists can augment traditional cognitive behavioral therapy. The automatic characterization of patient thinking patterns in this asynchronous text communication may guide treatment and assist in therapist training. In this work, we automatically identify distorted thinking in text-based patient-therapist exchanges, investigating the role of conversation history (context) in distortion prediction. We identify six unique types of cognitive distortions and utilize BERT-based architectures to represent text messages within the context of the conversation. We propose two approaches for leveraging dynamic conversation context in model training. By representing the text messages within the context of the broader patient-therapist conversation, the models better emulate the therapist’s task of recognizing distorted thoughts. This multi-turn classification approach also leverages the clustering of distorted thinking in the conversation timeline. We demonstrate that including conversation context, including the proposed dynamic context methods, improves distortion prediction performance. The proposed architectures and conversation encoding approaches achieve performance comparable to inter-rater agreement. The presence of any distorted thinking is identified with relatively high performance at 0.73 F1, significantly outperforming the best context-agnostic models (0.68 F1).
Cognitive distortions are counterproductive patterns of thinking that are one of the targets of cognitive behavioral therapy (CBT). These can be challenging for clinicians to detect, especially those without extensive CBT training or supervision. Text classification methods can approximate expert clinician judgment in the detection of frequently occurring cognitive distortions in text-based therapy messages. However, performance with infrequent distortions is relatively poor. In this study, we address this sparsity problem with two approaches: Data Augmentation and Domain-Specific Model. The first approach includes Easy Data Augmentation, back translation, and mixup techniques. The second approach utilizes a domain-specific pretrained language model, MentalBERT. To examine the viability of different data augmentation methods, we utilized a real-world dataset of texts between therapists and clients diagnosed with serious mental illness that was annotated for distorted thinking. We found that with optimized parameter settings, mixup was helpful for rare classes. Performance improvements with an augmented model, MentalBERT, exceed those obtained with data augmentation.