Xiping Xiping Hu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Layer-wise Regularized Dropout for Neural Language Models
Shiwen Ni | Min Yang | Ruifeng Xu | Chengming Li | Xiping Xiping Hu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Among the various pre-trained neural language models that are popular today, dropout is already an indispensable regularization technique. To solve the inconsistency between training and inference caused by the randomness of dropout, some studies use consistency training to regularize dropout at the output layer. In this paper, we propose a novel Layer-wise Regularized Dropout (LR-Drop), which is specially designed for Transformer-based Language models. Specifically, LR-Drop layer-wise regularizes each Transformer layer using the consistency training strategy. Each training sample passes through the two siamese sub-models sampled by dropout, and then LR-Drop forces the hidden states, multi-head attention matrices, and output distribution of the two siamese sub-models to be consistent. The proposed LR-Drop can be regarded as a “self-distillation” framework, in which each sub-model generated by dropout is the other’s “teacher” model and “student” model. Through extensive experiments on 8 natural language understanding datasets, 6 neural machine translation datasets, and 1 abstractive summarization dataset (a total of 15 datasets), we show that LR-Drop achieves superior performances, including state-of-the-art results.