Xinyan He


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
CHURRO: Making History Readable with an Open-Weight Large Vision-Language Model for High-Accuracy, Low-Cost Historical Text Recognition
Sina Semnani | Han Zhang | Xinyan He | Merve Tekgurler | Monica Lam
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Accurate text recognition for historical documents can greatly advance the study and preservation of cultural heritage. Existing vision-language models (VLMs), however, are designed for modern, standardized texts and are not equipped to read the diverse languages and scripts, irregular layouts, and frequent degradation found in historical materials.This paper presents CHURRO, a 3B-parameter open-weight VLM specialized for historical text recognition. The model is trained on CHURRO-DS, the largest historical text recognition dataset to date. CHURRO-DS unifies 155 historical corpora comprising 99,491 pages, spanning 22 centuries of textual heritage across 46 language clusters, including historical variants and dead languages.We evaluate several open-weight and closed VLMs and optical character recognition (OCR) systems on CHURRO-DS and find that CHURRO outperforms all other VLMs. On the CHURRO-DS test set, CHURRO achieves 82.3% (printed) and 70.1% (handwritten) normalized Levenshtein similarity, surpassing the second-best model, Gemini 2.5 Pro, by 1.4% and 6.5%, respectively, while being 15.5 times more cost-effective.By releasing the model and dataset, we aim to enable community-driven research to improve the readability of historical texts and accelerate scholarship.