This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
XinxinLi
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Semantic role labeling (SRL) is a crucial task of natural language processing (NLP). Although generative decoder-based large language models (LLMs) have achieved remarkable success across various NLP tasks, they still lag behind state-of-the-art encoder-decoder (BERT-like) models in SRL. In this work, we seek to bridge this gap by equipping LLMs for SRL with two mechanisms: (a) retrieval-augmented generation and (b) self-correction. The first mechanism enables LLMs to leverage external linguistic knowledge such as predicate and argument structure descriptions, while the second allows LLMs to identify and correct inconsistent SRL outputs. We conduct extensive experiments on three widely-used benchmarks of SRL (CPB1.0, CoNLL-2009, and CoNLL-2012). Results demonstrate that our method achieves state-of-the-art performance in both Chinese and English, marking the first successful application of LLMs to surpass encoder-decoder approaches in SRL.
Semantic Role Labeling (SRL), crucial for understanding semantic relationships in sentences, has traditionally focused on text-based input. However, the increasing use of voice assistants and the need for hands-free interaction have highlighted the importance of SRL from speech.SRL from speech can be accomplished via a two-step pipeline directly: transcribing speech to text via Automatic Speech Recognition (ASR) and then applying text-based SRL, which could lead to error propagation and loss of useful acoustic features.Addressing these challenges, we present the first end-to-end approach for SRL from speech, integrating ASR and SRL in a joint-learning framework, focusing on the Chinese language. By employing a Stright-Through Gumbel-Softmax module for connecting ASR and SRL models, it enables gradient back-propagation and joint optimization, enhancing robustness and effectiveness.Experiments on the Chinese Proposition Bank 1.0 (CPB1.0) and a newly annotated dataset AS-SRL based on AISHELL-1 demonstrate the superiority of the end-to-end model over traditional pipelines, with significantly improved performance.