Xinpeng OuYang

Also published as: 新鹏 欧阳


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
基于端到端预训练模型的藏文生成式文本摘要(Abstractive Summarization of Tibetan Based on end-to-end Pre-trained Model)
Shuo Huang (黄硕) | Xiaodong Yan (闫晓东) | Xinpeng OuYang (欧阳新鹏) | Jinpeng Yang (杨金鹏)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“近年来,预训练语言模型受到了广泛的关注,这些模型极大地促进了自然语言处理在不同下游任务中的应用。文本摘要作为自然语言处理中的一个重要分支,可以有效的减少冗余信息,从而提高浏览文本速度。藏文作为低资源语言,缺乏用于大规模的训练语料,藏文生成式文本摘要研究还处于起步阶段,为了解决藏文生成式文本摘要的问题,本文首次提出将端到端的预训练语言模型CMPT(Chinese Minority Pre-Trained Language Model)用于藏文生成式文本摘要研究,CMPT模型通过对其他不同低资源语言文本进行去噪和对比学习,同时为了提高编码器的理解能力,在编码器的输出层增加一个单层掩码语言模型(MLM)解码器,进行Seq2Seq的生成和理解的联合预训练。通过进一步微调可以有效地提高在藏文文本摘要任务上的性能。为了验证模型的性能,我们在自己构建的5w条藏文文本摘要数据集和公开数据集Ti-SUM上进行实验,在两个数据集上的实验表明,我们提出的方法在藏文生成式文本摘要的评测指标上有显著提升。同时,该方法不仅可以应用于藏文文本摘要任务,也可以拓展到其他语言的文本摘要任务中,具有较好的推广价值。”