Xinlei Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
DETQUS: Decomposition-Enhanced Transformers for QUery-focused Summarization
Yasir Khan | Xinlei Wu | Sangpil Youm | Justin Ho | Aryaan Mehboob Shaikh | Jairo Garciga | Rohan Sharma | Bonnie J Dorr
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Query-focused tabular summarization is an emerging task in table-to-text generation that synthesizes a summary response from tabular data based on user queries. Traditional transformer-based approaches face challenges due to token limitations and the complexity of reasoning over large tables. To address these challenges, we introduce DETQUS (Decomposition-Enhanced Transformers for QUery-focused Summarization), a system designed to improve summarization accuracy by leveraging tabular decomposition alongside a fine-tuned encoder-decoder model. DETQUS employs a large language model to selectively reduce table size, retaining only query-relevant columns while preserving essential information. This strategy enables more efficient processing of large tables and enhances summary quality. Our approach, equipped with table-based QA model Omnitab, achieves a ROUGE-L score of 0.4437, outperforming the previous state-ofthe- art REFACTOR model (ROUGE-L: 0.422). These results highlight DETQUS as a scalable and effective solution for query-focused tabular summarization, offering a structured alternative to more complex architectures.