Xinhao Huang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SEAL: Structure and Element Aware Learning Improves Long Structured Document Retrieval
Xinhao Huang | Zhibo Ren | Yipeng Yu | Ying Zhou | Zulong Chen | Zeyi Wen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In long structured document retrieval, existing methods typically fine-tune pre-trained language models (PLMs) using contrastive learning on datasets lacking explicit structural information. This practice suffers from two critical issues: 1) current methods fail to leverage structural features and element-level semantics effectively, and 2) the lack of datasets containing structural metadata. To bridge these gaps, we propose SEAL, a novel contrastive learning framework. It leverages structure-aware learning to preserve semantic hierarchies and masked element alignment for fine-grained semantic discrimination. Furthermore, we release StructDocRetrieval, a long structured document retrieval dataset with rich structural annotations. Extensive experiments on both the released and industrial datasets across various modern PLMs, and online A/B testing demonstrate consistent improvements, boosting NDCG@10 from 73.96% to 77.84% on BGE-M3. The resources are available at https://github.com/xinhaoH/SEAL.