Xingjin Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
LDM2: A Large Decision Model Imitating Human Cognition with Dynamic Memory Enhancement
Xingjin Wang | Linjing Li | Daniel Zeng
Findings of the Association for Computational Linguistics: EMNLP 2023

With the rapid development of large language models (LLMs), it is highly demanded that LLMs can be adopted to make decisions to enable the artificial general intelligence. Most approaches leverage manually crafted examples to prompt the LLMs to imitate the decision process of human. However, designing optimal prompts is difficult and the patterned prompts can hardly be generalized to more complex environments. In this paper, we propose a novel model named Large Decision Model with Memory (LDM2), which leverages a dynamic memory mechanism to construct dynamic prompts, guiding the LLMs in making proper decisions according to the faced state. LDM2 consists of two stages: memory formation and memory refinement. In the former stage, human behaviors are decomposed into state-action tuples utilizing the powerful summarizing ability of LLMs. Then, these tuples are stored in the memory, whose indices are generated by the LLMs, to facilitate the retrieval of the most relevant subset of memorized tuples based on the current state. In the latter stage, our LDM2 employs tree exploration to discover more suitable decision processes and enrich the memory by adding valuable state-action tuples. The dynamic circle of exploration and memory enhancement provides LDM2 a better understanding of the global environment. Extensive experiments conducted in two interactive environments have shown that our LDM2 outperforms the baselines in terms of both score and success rate, which demonstrates its effectiveness.