Xingchen Zou


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
GraphAgent: Agentic Graph Language Assistant
Yuhao Yang | Jiabin Tang | Lianghao Xia | Xingchen Zou | Yuxuan Liang | Chao Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Real-world data combines structured (e.g., graph connections) and unstructured (e.g., text, visuals) formats, capturing explicit relationships (e.g., social links) and implicit semantic interdependencies (e.g., knowledge graphs). We propose GraphAgent, an automated agent pipeline addressing both explicit and implicit graph-enhanced semantic dependencies for predictive (e.g., node classification) and generative (e.g., text generation) tasks. GraphAgent integrates three components: (i) a Graph Generator Agent creating knowledge graphs for semantic dependencies; (ii) a Task Planning Agent interpreting user queries and formulating tasks via self-planning; and (iii) a Task Execution Agent automating task execution with tool matching. These agents combine language and graph language models to reveal complex relational and semantic patterns. Extensive experiments on diverse datasets validate GraphAgent’s effectiveness in graph-related predictive and text generative tasks. GraphAgent is open-sourced at: https://anonymous.4open.science/r/GraphAgent-Submit-6F52/.