This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Multiple-choice question (MCQ) datasets like Massive Multitask Language Understanding (MMLU) are widely used to evaluate the commonsense, understanding, and problem-solving abilities of large language models (LLMs). However, the open-source nature of these benchmarks and the broad sources of training data for LLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation. To alleviate this issue, we propose the contamination-free MCQ benchmark called MMLU-CF, which reassesses LLMs’ understanding of world knowledge by averting both unintentional and malicious data contamination. To mitigate unintentional data contamination, we source questions from a broader domain of over 200 billion webpages and apply three specifically designed decontamination rules. To prevent malicious data contamination, we divide the benchmark into validation and test sets with similar difficulty and subject distributions. The test set remains closed-source to ensure reliable results, while the validation set is publicly available to promote transparency and facilitate independent evaluation. The performance gap between these two sets of LLMs will indicate the contamination degree on the validation set in the future. We evaluated over 40 mainstream LLMs on the MMLU-CF. Compared to the original MMLU, not only LLMs’ performances significantly dropped but also the performance rankings of them changed considerably. This indicates the effectiveness of our approach in establishing a contamination-free and fairer evaluation standard.
Large Language Models (LLMs) excel in various natural language processing tasks but remain vulnerable to generating harmful content or being exploited for malicious purposes. Although safety alignment datasets have been introduced to mitigate such risks through supervised fine-tuning (SFT), these datasets often lack comprehensive risk coverage. Most existing datasets focus primarily on lexical diversity while neglecting other critical dimensions. To address this limitation, we propose a novel analysis framework to systematically measure the risk coverage of alignment datasets across three essential dimensions: Lexical Diversity, Malicious Intent, and Jailbreak Tactics. We further introduce TRIDENT, an automated pipeline that leverages persona-based, zero-shot LLM generation to produce diverse and comprehensive instructions spanning these dimensions. Each harmful instruction is paired with an ethically aligned response, resulting in two datasets: TRIDENT-Core, comprising 26,311 examples, and TRIDENT-Edge, with 18,773 examples. Fine-tuning Llama 3.1-8B on TRIDENT-Edge demonstrates substantial improvements, achieving an average 14.29% reduction in Harm Score, and a 20% decrease in Attack Success Rate compared to the best-performing baseline model fine-tuned on the WildBreak dataset.
It is well-known that a diverse corpus is critical for training large language models, which are typically constructed from a mixture of various domains. In general, previous efforts resort to either sampling training data from different domains with static proportions or dynamically adjusting these proportions during training to optimise pretraining performance. However, few methods addressed the complexities of domain-adaptive continual pre-training. To fill this gap, we propose Velocitune, a novel framework that dynamically assesses learning velocity and adjusts data proportions accordingly, favouring slower learning domains while de-emphasising faster learning ones, which is guided by a scaling law to estimate the desired learning goal for each domain with a less associated cost. To evaluate the effectiveness of Velocitune, we conduct experiments on a dataset focused on reasoning tasks with CodeLlama, as well as on a corpus of system commands using Llama3 and Mistral. Velocitune achieves performance gains in both math and code reasoning tasks and command-line generation benchmarks. Further analysis reveals that key factors driving Velocitune’s effectiveness include target estimation and data ordering.
Implementing new features in repository-level codebases is a crucial application of code generation models. However, current benchmarks lack a dedicated evaluation framework for this capability. To fill this gap, we introduce FEA-Bench, a benchmark designed to assess the ability of large language models (LLMs) to perform incremental development within code repositories. We collect pull requests from 83 GitHub repositories and use rule-based and intent-based filtering to construct task instances focused on new feature development. Each task instance containing code changes is paired with relevant unit test files to ensure that the solution can be verified. The feature implementation requires LLMs to simultaneously possess code completion capabilities for new components and code editing abilities for other relevant parts in the code repository, providing a more comprehensive evaluation method of LLMs’ automated software engineering capabilities.Experimental results show that LLMs perform significantly worse in the FEA-Bench, highlighting considerable challenges in such repository-level incremental code development.
The safety mechanisms of large language models (LLMs) exhibit notable fragility, as even fine-tuning on datasets without harmful content may still undermine their safety capabilities. Meanwhile, existing safety alignment methods predominantly rely on the fine-tuning process, which inadvertently leads to the increased complexity and computational resources required. To address these issues, we introduce LSSF, a novel safety re-alignment framework with Low-Rank Safety Subspace Fusison. Our proposed method exploits the low-rank characteristics of safety information in LLMs by constructing a low-rank projection matrix to extract the principal components of safety vectors. Notably, this projection matrix represents the low-rank safety subspace of the LLMs, which we have observed to remain stable during fine-tuning process and is isolated from the model’s general capabilities. These principal components are used to effectively restore safety alignment when combined with fine-tuned LLMs through linear arithmetic. Additionally, to account for the varying encoding densities of safety information across different layers of LLMs, we propose a novel metric called safety singular value entropy. This metric quantifies the encoding density and allows for the dynamic computation of the safety-critical rank for each safety vector. Extensive experiments demonstrate that our proposed post-hoc alignment method can effectively restore the safety alignment of fine-tuned models with minimal impact on their performance on downstream tasks.
Instruction tuning has empowered large language models (LLMs) to achieve remarkable performance, yet its success heavily depends on the availability of large-scale, high-quality instruction-response pairs. To meet this demand, various methods have been developed to synthesize data at scale. However, current methods for scaling up data generation often overlook a crucial aspect: the alignment between instructions and responses. We hypothesize that the quality of instruction-response pairs is determined not by the individual quality of each component, but by the degree of mutual alignment. To address this, we propose a Mutual Alignment Framework (MAIN) which enforces coherence between instructions and responses through mutual constraints. We demonstrate that MAIN generalizes well across model architectures and sizes, achieving state-of-the-art performance on LLaMA, Mistral, and Qwen models across diverse benchmarks. This work underscores the critical role of instruction-response alignment in enabling generalizable and high-quality instruction tuning for LLMs. All code is available from our repository.
Preference learning extends the performance of Code LLMs beyond traditional supervised fine-tuning by leveraging relative quality comparisons. In existing approaches, a set of n candidate solutions is evaluated based on test case success rates, with the candidate demonstrating a higher pass rate being labeled as positive and its counterpart with a lower pass rate as negative. However, because this approach aligns entire failing code blocks rather than pinpointing specific errors, it lacks the granularity necessary to capture meaningful error-correction relationships. As a result, the model is unable to learn more informative error-correction patterns. To address these issues, we propose Target-DPO, a new preference alignment framework that mimics human iterative debugging to refine Code LLMs. Target-DPO explicitly locates error regions and aligns the corresponding tokens via a tailored DPO algorithm. To facilitate it, we introduce the CodeFlow dataset, where samples are iteratively refined until passing tests, with modifications capturing error corrections. Extensive experiments show that a diverse suite of Code LLMs equipped with Target-DPO achieves significant performance gains in code generation and improves on challenging tasks like BigCodeBench. In-depth analysis reveals that Target-DPO yields fewer errors. Code, model and datasets are in: https://github.com/JieWu02/Target-DPO.
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they often refuse to answer legitimate queries—a phenomenon known as overrefusal. Overrefusal typically stems from over-conservative safety alignment, causing models to treat many reasonable prompts as potentially risky. To systematically understand this issue, we probe and leverage the models’ safety decision boundaries to analyze and mitigate overrefusal. Our findings reveal that overrefusal is closely tied to misalignment at these boundary regions, where models struggle to distinguish subtle differences between benign and harmful content. Building on these insights, we present **RASS**, an automated framework for prompt generation and selection that strategically targets overrefusal prompts near the safety boundary. By harnessing steering vectors in the representation space, **RASS** efficiently identifies and curates boundary-aligned prompts, enabling more effective and targeted mitigation of overrefusal. This approach not only provides a more precise and interpretable view of model safety decisions but also seamlessly extends to multilingual scenarios. We have explored the safety decision boundaries of various LLMs and construct the **MORBench** evaluation set to facilitate robust assessment of model safety and helpfulness across multiple languages. Code and datasets are available at https://github.com/Master-PLC/RASS.
Key Information Extraction (KIE) is a challenging multimodal task aimed at extracting structured value entities from visually rich documents. Despite recent advancements, two major challenges remain. First, existing datasets typically feature fixed layouts and a limited set of entity categories, while current methods are based on a full-shot setting that is difficult to apply in real-world scenarios, where new entity categories frequently emerge. Secondly, current methods often treat key entities simply as parts of the OCR-parsed context, neglecting the positive impact of the relationships between key-value entities. To address the first challenge, we introduce a new large-scale, human-annotated dataset, Complex Layout document for Key Information Extraction (CLEX). Comprising 5,860 images with 1,162 entity categories, CLEX is larger and more complex than existing datasets. It also primarily focuses on the zero-shot and few-shot KIE tasks, which are more aligned with real-world applications. To tackle the second challenge, we propose the Parallel Pointer-based Network (P²Net). This model frames KIE as a pointer-based classification task and effectively leverages implicit relationships between key-value entities to enhance extraction. Its parallel extraction mechanism enables simultaneous and efficient extraction of multiple results. Experiments on widely-used datasets, including SROIE, CORD, and the newly introduced CLEX, demonstrate that P²Net outperforms existing state-of-the-art methods (including GPT-4V) while maintaining fast inference speeds.
Large Language Models have demonstrated outstanding performance across various downstream tasks and have been widely applied in multiple scenarios. Human-annotated preference data is used for training to further improve LLMs’ performance, which is constrained by the upper limit of human performance. Therefore, Self-Rewarding method has been proposed, where LLMs generate training data by rewarding their own outputs. However, the existing self-rewarding paradigm is not effective in mathematical reasoning scenarios and may even lead to a decline in performance. In this work, we propose the Process-based Self-Rewarding pipeline for language models, which introduces long-thought reasoning, step-wise LLM-as-a-Judge, and step-wise preference optimization within the self-rewarding paradigm. Our new paradigm successfully enhances the performance of LLMs on multiple mathematical reasoning benchmarks through iterative Process-based Self-Rewarding, demonstrating the immense potential of process-based self-rewarding to achieve LLM reasoning that may surpass human capabilities.
In light of the widespread deployment of Large Language Models (LLMs), the responsibility for safeguarding and regulating LLM-generated content has taken on heightened significance. Recent advancements in LLM-based moderation methods, e.g., LlamaGuard, have demonstrated remarkable promise in identifying safety risks associated with both inputs and outputs in human-AI interactions. However, integrating LLM-based safeguards into a chatbot system requires an additional inference stage involving a moderation LLM with billions of parameters, which significantly increases computational costs and reduces overall efficiency. In this paper, we demonstrate that simply learning a classification head on the last-layer hidden states of the dialogue model provides a strong capability to identify harmful contents. The classification head, referred to as ShieldHead, serves as an auxiliary branch paralleled with next-token-prediction LM head, enabling the detection of potential risks in past text sequences. Additionally, a label disambiguation technique is employed to supervise ShieldHead with both token-level and sentence-level labels, which further enhances its performance. ShieldHead exhibits remarkable efficiency during inference, providing real-time moderation results alongside token-wise streaming output during the chatbot system’s decoding phase. Extensive experimental results demonstrate the superiority of the proposed framework: a state-of-the-art performance on the XSTest and SafeRLHF datasets while running at a speed about **300×** faster (**<1ms**) than previous LLM-based moderation models with ** 99%** less parameters of LlamaGuard.
Despite the promise of large language models (LLMs) in finance, their capabilities for financial misinformation detection (FMD) remain largely unexplored. To evaluate the capabilities of LLMs in FMD task, we introduce the financial misinformation detection shared task featured at COLING FinNLP-FNP-LLMFinLegal-2024, FMD Challenge. This challenge aims to evaluate the ability of LLMs to verify financial misinformation while generating plausible explanations. In this paper, we provide an overview of this task and dataset, summarize participants’ methods, and present their experimental evaluations, highlighting the effectiveness of LLMs in addressing the FMD task. To the best of our knowledge, the FMD Challenge is one of the first challenges for assessing LLMs in the field of FMD. Therefore, we provide detailed observations and draw conclusions for the future development of this field.
Human Preference Alignment (HPA) can assist large language models (LLMs) to generate safe content. Due to the heavy cost of fine-tuning, tuning-free methods have emerged, typically modifying LLM decoding via post-processing. In this paper, we propose a novel and effective approach for HPA in a tuning-free way, named In-Context Direct Preference Optimization (ICDPO). We first rethink the derivation procedures of DPO, based on which we conversely build an instant scorer using the states of the LLM before and after ICL. It enables LLMs to both generate and select the well-aligned response, which is precisely estimated by the aforementioned instant scorer, thereby enhancing the final performance. ICDPO can be further enhanced with a two-stage retriever and an upgraded scorer. Extensive experiments show its effectiveness, particularly in outperforming multiple tuning-free baselines, even competitiveness with SFT and DPO. We also conduct detailed analyses to offer comprehensive insights into ICDPO.
Reinforcement Learning with Human Feedback (RLHF) is the key to the success of large language models (LLMs) in recent years. In this work, we first introduce the concepts of knowledge breadth and knowledge depth, which measure the comprehensiveness and depth of an LLM or knowledge source respectively. We reveal that the imbalance in the number of prompts and responses can lead to a potential disparity in breadth and depth learning within alignment tuning datasets by showing that even a simple uniform method for balancing the number of instructions and responses can lead to significant improvements. Building on this, we further propose Balanced Preference Optimization (BPO), designed to dynamically augment the knowledge depth of each sample. BPO is motivated by the observation that the usefulness of knowledge varies across samples, necessitating tailored learning of knowledge depth. To achieve this, we introduce gradient-based clustering, estimating the knowledge informativeness and usefulness of each augmented sample based on the model’s optimization direction. Our experimental results across various benchmarks demonstrate that BPO outperforms other baseline methods in alignment tuning while maintaining training efficiency. Furthermore, we conduct a detailed analysis of each component of BPO, providing guidelines for future research in preference data optimization.
In the large language model (LLM) revolution, embedding is a key component of various systems, such as retrieving knowledge or memories for LLMs or building content moderation filters. As such cases span from English to other natural or programming languages, from retrieval to classification and beyond, it is advantageous to build a unified embedding model rather than dedicated ones for each scenario. In this context, the pre-trained multilingual decoder-only large language models, e.g., BLOOM, emerge as a viable backbone option. To assess their potential, we propose straightforward strategies for constructing embedders and introduce a universal evaluation benchmark. Experimental results show that our trained model is proficient at generating good embeddings across languages and tasks, even extending to languages and tasks for which no finetuning/pretraining data is available. We also present detailed analyses and additional evaluations. We hope that this work could encourage the development of more robust open-source universal embedders.
Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks.
Recent work demonstrates that, after instruction tuning, Code Large Language Models (Code LLMs) can obtain impressive capabilities to address a wide range of code-related tasks. However, current instruction tuning methods for Code LLMs mainly focus on the traditional code generation task, resulting in poor performance in complex multi-task scenarios. In this paper, we concentrate on multiple code-related tasks and present WaveCoder, a series of Code LLMs trained with Widespread And Versatile Enhanced instruction data. To enable the models to tackle complex code-related tasks, we propose a method to stably generate diverse, high-quality instruction data from open source code dataset in multi-task scenarios and obtain CodeOcean, a dataset comprising 19,915 instruction instances across 4 code-related tasks, which is aimed at improving the generalization ability of Code LLM. Our experiments demonstrate that WaveCoder models significantly outperform other open-source models in terms of the generalization ability across different code-related tasks. Moreover, WaveCoder-Ultra-6.7B presents the state-of-the-art generalization abilities on a wide range of code-related tasks.
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages.We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs.Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/.
Sentiment analysis on user reviews has achieved great success thanks to the rapid growth of deep learning techniques. The large number of online streaming reviews also provides the opportunity to model temporal dynamics for users and products on the timeline. However, existing methods model users and products in the real world based on a static assumption and neglect their time-varying characteristics. In this paper, we present DC-DGNN, a dual-channel framework based on a dynamic graph neural network (DGNN) that models temporal user and product dynamics for sentiment analysis. Specifically, a dual-channel text encoder is employed to extract current local and global contexts from review documents for users and products. Moreover, user review streams are integrated into the dynamic graph neural network by treating users and products as nodes and reviews as new edges. Node representations are dynamically updated along with the evolution of the dynamic graph and used for the final score prediction. Experimental results on five real-world datasets demonstrate the superiority of the proposed method.
Recent research has investigated the use of generative language models to produce regular expressions with semantic-based approaches. However, these approaches have shown shortcomings in practical applications, particularly in terms of functional correctness, which refers to the ability to reproduce the intended function inputs by the user. To address this issue, we present a novel method called Unit-Test Driven Reinforcement Learning (UTD-RL). Our approach differs from previous methods by taking into account the crucial aspect of functional correctness and transforming it into a differentiable gradient feedback using policy gradient techniques. In which functional correctness can be evaluated through Unit Tests, a testing method that ensures regular expressions meets its design and performs as intended. Experiments conducted on three public datasets demonstrate the effectiveness of the proposed method in generating regular expressions. This method has been employed in a regulatory scenario where regular expressions can be utilized to ensure that all online content is free from non-compliant elements, thereby significantly reducing the workload of relevant personnel.
Annually, e-commerce platforms incur substantial financial losses due to trademark infringements, making it crucial to identify and mitigate potential legal risks tied to merchant information registered to the platforms. However, the absence of high-quality datasets hampers research in this area. To address this gap, our study introduces TMID, a novel dataset to detect trademark infringement in merchant registrations. This is a real-world dataset sourced directly from Alipay, one of the world’s largest e-commerce and digital payment platforms. As infringement detection is a legal reasoning task requiring an understanding of the contexts and legal rules, we offer a thorough collection of legal rules and merchant and trademark-related contextual information with annotations from legal experts. We ensure the data quality by performing an extensive statistical analysis. Furthermore, we conduct an empirical study on this dataset to highlight its value and the key challenges. Through this study, we aim to contribute valuable resources to advance research into legal compliance related to trademark infringement within the e-commerce sphere.
Text-to-SQL is the task that aims at translating natural language questions into SQL queries. Existing methods directly align the natural language with SQL Language and train one encoder-decoder-based model to fit all questions. However, they underestimate the inherent structural characteristics of SQL, as well as the gap between specific structure knowledge and general knowledge. This leads to structure errors in the generated SQL. To address the above challenges, we propose a retrieval-argument framework, namely ReFSQL. It contains two parts, structure-enhanced retriever and the generator. Structure-enhanced retriever is designed to identify samples with comparable specific knowledge in an unsupervised way. Subsequently, we incorporate the retrieved samples’ SQL into the input, enabling the model to acquire prior knowledge of similar SQL grammar. To further bridge the gap between specific and general knowledge, we present a mahalanobis contrastive learning method, which facilitates the transfer of the sample toward the specific knowledge distribution constructed by the retrieved samples. Experimental results on five datasets verify the effectiveness of our approach in improving the accuracy and robustness of Text-to-SQL generation. Our framework has achieved improved performance when combined with many other backbone models (including the 11B flan-T5) and also achieved state-of-the-art performance when compared to existing methods that employ the fine-tuning approach.
Multi-modal large language models are regarded as a crucial step towards Artificial General Intelligence (AGI) and have garnered significant interest with the emergence of ChatGPT. However, current speech-language models typically adopt the cascade paradigm, preventing inter-modal knowledge transfer. In this paper, we propose SpeechGPT, a large language model with intrinsic cross-modal conversational abilities, capable of perceiving and generating multi-modal content. With discrete speech representations, we construct SpeechInstruct, the first large-scale cross-modal speech instruction dataset. Additionally, we employ a three-stage training strategy that includes modality-adaptation pre-training, cross-modal instruction fine-tuning, and chain-of-modality instruction fine-tuning. The experimental results demonstrate that SpeechGPT has an impressive capacity to follow cross-modal human instructions and highlight the potential of handling multiple modalities with one model. Code and models are available in https://github.com/0nutation/SpeechGPT. Demos are shown in https://0nutation.github.io/SpeechGPT.github.io/.
Successful Machine Learning based Named Entity Recognition models could fail on texts from some special domains, for instance, Chinese addresses and e-commerce titles, where requires adequate background knowledge. Such texts are also difficult for human annotators. In fact, we can obtain some potentially helpful information from correlated texts, which have some common entities, to help the text understanding. Then, one can easily reason out the correct answer by referencing correlated samples. In this paper, we suggest enhancing NER models with correlated samples. We draw correlated samples by the sparse BM25 retriever from large-scale in-domain unlabeled data. To explicitly simulate the human reasoning process, we perform a training-free entity type calibrating by majority voting. To capture correlation features in the training stage, we suggest to model correlated samples by the transformer-based multi-instance cross-encoder. Empirical results on datasets of the above two domains show the efficacy of our methods.
Conventional phrase grounding aims to localize noun phrases mentioned in a given caption to their corresponding image regions, which has achieved great success recently. Apparently, sole noun phrase grounding is not enough for cross-modal visual language understanding. Here we extend the task by considering pronouns as well. First, we construct a dataset of phrase grounding with both noun phrases and pronouns to image regions. Based on the dataset, we test the performance of phrase grounding by using a state-of-the-art literature model of this line. Then, we enhance the baseline grounding model with coreference information which should help our task potentially, modeling the coreference structures with graph convolutional networks. Experiments on our dataset, interestingly, show that pronouns are easier to ground than noun phrases, where the possible reason might be that these pronouns are much less ambiguous. Additionally, our final model with coreference information can significantly boost the grounding performance of both noun phrases and pronouns.
Crowdsourcing is regarded as one prospective solution for effective supervised learning, aiming to build large-scale annotated training data by crowd workers. Previous studies focus on reducing the influences from the noises of the crowdsourced annotations for supervised models. We take a different point in this work, regarding all crowdsourced annotations as gold-standard with respect to the individual annotators. In this way, we find that crowdsourcing could be highly similar to domain adaptation, and then the recent advances of cross-domain methods can be almost directly applied to crowdsourcing. Here we take named entity recognition (NER) as a study case, suggesting an annotator-aware representation learning model that inspired by the domain adaptation methods which attempt to capture effective domain-aware features. We investigate both unsupervised and supervised crowdsourcing learning, assuming that no or only small-scale expert annotations are available. Experimental results on a benchmark crowdsourced NER dataset show that our method is highly effective, leading to a new state-of-the-art performance. In addition, under the supervised setting, we can achieve impressive performance gains with only a very small scale of expert annotations.
Using data from English cloze tests, in which subjects also self-reported their gender, age, education, and race, we examine performance differences of pretrained language models across demographic groups, defined by these (protected) attributes. We demonstrate wide performance gaps across demographic groups and show that pretrained language models systematically disfavor young non-white male speakers; i.e., not only do pretrained language models learn social biases (stereotypical associations) – pretrained language models also learn sociolectal biases, learning to speak more like some than like others. We show, however, that, with the exception of BERT models, larger pretrained language models reduce some the performance gaps between majority and minority groups.
We describes deep neural networks frameworks in this paper to address the community question answering (cQA) ranking task (SemEval-2017 task 3). Convolutional neural networks and bi-directional long-short term memory networks are applied in our methods to extract semantic information from questions and answers (comments). In addition, in order to take the full advantage of question-comment semantic relevance, we deploy interaction layer and augmented features before calculating the similarity. The results show that our methods have the great effectiveness for both subtask A and subtask C.
This paper first describes an experiment to construct an English-Chinese parallel corpus, then applying the Uplug word alignment tool on the corpus and finally produce and evaluate an English-Chinese word list. The Stockholm English-Chinese Parallel Corpus (SEC) was created by downloading English-Chinese parallel corpora from a Chinese web site containing law texts that have been manually translated from Chinese to English. The parallel corpus contains 104 563 Chinese characters equivalent to 59 918 Chinese words, and the corresponding English corpus contains 75 766 English words. However Chinese writing does not utilize any delimiters to mark word boundaries so we had to carry out word segmentation as a preprocessing step on the Chinese corpus. Moreover since the parallel corpus is downloaded from Internet the corpus is noisy regarding to alignment between corresponding translated sentences. Therefore we used 60 hours of manually work to align the sentences in the English and Chinese parallel corpus before performing automatic word alignment using Uplug. The word alignment with Uplug was carried out from English to Chinese. Nine respondents evaluated the resulting English-Chinese word list with frequency equal to or above three and we obtained an accuracy of 73.1 percent.