Xin Zhang

Other people with similar names: Xin Zhang, Xin Zhang, Xin Zhang

Unverified author pages with similar names: Xin Zhang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
An Orthogonal High-Rank Adaptation for Large Language Models
Xin Zhang | Guang-Ze Chen | Shuzhen Li | Zhulin Liu | C.L.Philip Chen | Tong Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Low-rank adaptation (LoRA) efficiently adapts LLMs to downstream tasks by decomposing LLMs’ weight update into trainable low-rank matrices for fine-tuning. However, the random low-rank matrices may introduce massive task-irrelevant information, while their recomposed form suffer from limited representation spaces under low-rank operations. Such dense and choked adaptation in LoRA impairs the adaptation performance of LLMs on downstream tasks. To address these challenges, this paper proposes OHoRA, an orthogonal high-rank adaptation for parameter-efficient fine-tuning on LLMs. According to the information bottleneck theory, OHoRA decomposes LLMs’ pre-trained weight matrices into orthogonal basis vectors via QR decomposition and splits them into two low-redundancy high-rank components to suppress task-irrelevant information. It then performs dynamic rank-elevated recomposition through Kronecker product to generate expansive task-tailored representation spaces, enabling precise LLM adaptation and enhanced generalization. OHoRA effectively operationalizes the information bottleneck theory to decompose LLMs’ weight matrices into low-redundancy high-rank components and recompose them in rank-elevated manner for more task-tailored representation spaces and precise LLM adaptation. Empirical evaluation shows OHoRA’s effectiveness by outperforming LoRA and its variants and achieving comparable performance to full fine-tuning with only 0.0371% trainable parameters.