Xin Deik Goh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Planning with Multi-Constraints via Collaborative Language Agents
Cong Zhang | Xin Deik Goh | Dexun Li | Hao Zhang | Yong Liu
Proceedings of the 31st International Conference on Computational Linguistics

The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank. Notably, PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B.