Xiaxia Wang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TARGA: Targeted Synthetic Data Generation for Practical Reasoning over Structured Data
Xiang Huang | Jiayu Shen | Shanshan Huang | Sitao Cheng | Xiaxia Wang | Yuzhong Qu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Semantic parsing, which converts natural language queries into logic forms, plays a crucial role in reasoning within structured environments. However, existing methods encounter two significant challenges: reliance on extensive manually annotated datasets and limited generalization capability to unseen examples. To tackle these issues, we propose Targeted Synthetic Data Generation (Targa), a practical framework that dynamically generates high-relevance synthetic data without manual annotation. Starting from the pertinent entity and relation of a given question, we probe for the potential relevant queries through layer-wise expansion and cross-layer combination. Then, we generate corresponding natural language questions for these constructed queries to jointly serve as the synthetic demonstration for in-context learning. Experiments on multiple knowledge-based question answering (KBQA) datasets demonstrate that Targa, using only a 7B-parameter model, substantially outperforms existing non-fine-tuned methods that utilize close-sourced model, achieving notable improvements in F1 scores on GrailQA(+7.7) and KBQA-Agent(+12.2). Furthermore, Targa also exhibits superior sample efficiency, robustness, and generalization capabilities under non-I.I.D. settings.