Xiaoyun Mo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
HammerBench: Fine-Grained Function-Calling Evaluation in Real Mobile Assistant Scenarios
Jun Wang | Jiamu Zhou | Xihuai Wang | Xiaoyun Mo | Haoyu Zhang | Qiqiang Lin | Cheng Jin | Muning Wen | Weinan Zhang | Qiuying Peng | Jun Wang
Findings of the Association for Computational Linguistics: ACL 2025

Evaluating the performance of LLMs in multi-turn human-agent interactions presents significant challenges, particularly due to the complexity and variability of user behavior. In this paper, we introduce HammerBench, a novel benchmark framework for assessing LLMs’ function-calling capabilities in real-world, multi-turn dialogues. HammerBench simulates diverse mobile assistant use cases, incorporating imperfect instructions, dynamic question-answer trajectories, intent and argument shifts, and the indirect use of external information through pronouns. To construct this benchmark, we curate a comprehensive dataset derived from popular mobile app functionalities and anonymized user logs, complemented by a cost-effective data generation pipeline leveraging open-source models. HammerBench is further augmented with fine-grained interaction snapshots and metrics, enabling detailed evaluation of function-calling performance across individual conversational turns. We demonstrate the effectiveness of HammerBench by evaluating several leading LLMs and uncovering key performance trends. Our experiments reveal that different types of parameter name errors are a significant source of failure across different interaction scenarios, highlighting critical areas for further improvement in LLM robustness for mobile assistant applications.