Xiaosheng Fan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Automatic Generation of Citation Texts in Scholarly Papers: A Pilot Study
Xinyu Xing | Xiaosheng Fan | Xiaojun Wan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we study the challenging problem of automatic generation of citation texts in scholarly papers. Given the context of a citing paper A and a cited paper B, the task aims to generate a short text to describe B in the given context of A. One big challenge for addressing this task is the lack of training data. Usually, explicit citation texts are easy to extract, but it is not easy to extract implicit citation texts from scholarly papers. We thus first train an implicit citation extraction model based on BERT and leverage the model to construct a large training dataset for the citation text generation task. Then we propose and train a multi-source pointer-generator network with cross attention mechanism for citation text generation. Empirical evaluation results on a manually labeled test dataset verify the efficacy of our model. This pilot study confirms the feasibility of automatically generating citation texts in scholarly papers and the technique has the great potential to help researchers prepare their scientific papers.