This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
XiaopengBai
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Argument mining has garnered increasing attention over the years, with the recent advancement of Large Language Models (LLMs) further propelling this trend. However, current argument relations remain relatively simplistic and foundational, struggling to capture the full scope of argument information. To address this limitation, we propose a systematic framework comprising 14 fine-grained relation types from the perspectives of vertical argument relations and horizontal discourse relations, thereby capturing the intricate interplay between argument components for a thorough understanding of argument structure. On this basis, we conducted extensive experiments on three tasks: argument component prediction, relation prediction, and automated essay grading. Additionally, we explored the impact of writing quality on argument component prediction and relation prediction, as well as the connections between discourse relations and argumentative features. The findings highlight the importance of fine-grained argumentative annotations for argumentative writing assessment and encourage multi-dimensional argument analysis.
“Rhetoric is fundamental to the reading comprehension and writing skills of primary and middle school students. However, current work independently recognize single coarse-grained categories or fine-grained categories. In this paper, we propose the CCL24-Eval Task6: Chinese Essay Rhetoric Recognition and Understanding (CERRU), consisting of 3 tracks: (1) Fine-grained Form-level Categories Recognition, (2) Fine-grained Content-level Categories Recognition and (3) Rhetorical Component Extraction. A total of 32 teams registered to participate in CERRU and 9 teams submitted evaluation results, with 7 of these teams achieving an overall score that surpassed the baseline.”
“This paper presents a detailed review of Task 7 in the CCL24-Eval: the second Chinese Essay Fluency Evaluation (CEFE). The task aims to identify fine-grained grammatical errors that impair readability and coherence in essays authored by Chinese primary and secondary school students, evaluate the essays’ fluency levels, and recommend corrections to improve their written fluency. The evaluation comprises three tracks: (1) Coarse-grained and fine-grained error identification; (2) Error sentence rewriting; and (3) Essay Fluency Level Recognition. We garnered 29 completed registrations, resulting in 180 submissions from 10 dedicated teams. The paper discusses the submissions and analyzes the results from all participating teams.”
This paper introduces the Chinese Essay Argument Mining Corpus (CEAMC), a manually annotated dataset designed for argument component classification on multiple levels of granularity. Existing argument component types in education remain simplistic and isolated, failing to encapsulate the complete argument information. Originating from authentic examination settings, CEAMC categorizes argument components into 4 coarse-grained and 10 fine-grained delineations, surpassing previous simple representations to capture the subtle nuances of argumentation in the real world, thus meeting the needs of complex and diverse argumentative scenarios. Our contributions include the development of CEAMC, the establishment of baselines for further research, and a thorough exploration of the performance of Large Language Models (LLMs) on CEAMC. The results indicate that our CEAMC can serve as a challenging benchmark for the development of argument analysis in education.
Grammatical Error Correction (GEC) is a crucial technique in Automated Essay Scoring (AES) for evaluating the fluency of essays. However, in Chinese, existing GEC datasets often fail to consider the importance of specific grammatical error types within compositional scenarios, lack research on data collected from native Chinese speakers, and largely overlook cross-sentence grammatical errors. Furthermore, the measurement of the overall fluency of an essay is often overlooked. To address these issues, we present CEFA (Chinese Essay Fluency Assessment), an extensive corpus that is derived from essays authored by native Chinese-speaking primary and secondary students and encapsulates essay fluency scores along with both coarse and fine-grained grammatical error types and corrections. Experiments employing various benchmark models on CEFA substantiate the challenge of our dataset. Our findings further highlight the significance of fine-grained annotations in fluency assessment and the mutually beneficial relationship between error types and corrections
“This paper provides a comprehensive review of the CCL23-Eval Task 8, i.e., Chinese EssayFluency Evaluation (CEFE). The primary aim of this task is to systematically identify the typesof grammatical fine-grained errors that affect the readability and coherence of essays writtenby Chinese primary and secondary school students, and then to suggest suitable corrections toenhance the fluidity of their written expression. This task consists of three distinct tracks: (1)Coarse-grained and fine-grained error identification; (2) Character-level error identification andcorrection; (3) Error sentence rewriting. In the end, we received 44 completed registration forms,leading to a total of 130 submissions from 11 dedicated participating teams. We present theresults of all participants and our analysis of these results. Both the dataset and evaluation toolused in this task are available1.”
This paper introduces the Chinese Essay Discourse Coherence Corpus (CEDCC), a multi-task dataset for assessing discourse coherence. Existing research tends to focus on isolated dimensions of discourse coherence, a gap which the CEDCC addresses by integrating coherence grading, topical continuity, and discourse relations. This approach, alongside detailed annotations, captures the subtleties of real-world texts and stimulates progress in Chinese discourse coherence analysis. Our contributions include the development of the CEDCC, the establishment of baselines for further research, and the demonstration of the impact of coherence on discourse relation recognition and automated essay scoring. The dataset and related codes is available at https://github.com/cubenlp/CEDCC_corpus.
Detection and correction of Chinese grammatical errors have been two of major challenges for Chinese automatic grammatical error diagnosis. This paper presents an N-gram model for automatic detection and correction of Chinese grammatical errors in NLPTEA 2017 task. The experiment results show that the proposed method is good at correction of Chinese grammatical errors.