This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
XiaominChu
Also published as:
晓敏 褚
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Topic segmentation and outline generation strive to divide a document into coherent topic sections and generate corresponding subheadings, unveiling the discourse topic structure of a document. Compared with sentence-level topic structure, the paragraph-level topic structure can quickly grasp and understand the overall context of the document from a higher level, benefitting many downstream tasks such as summarization, discourse parsing, and information retrieval. However, the lack of large-scale, high-quality Chinese paragraph-level topic structure corpora restrained relative research and applications. To fill this gap, we build the Chinese paragraph-level topic representation, corpus, and benchmark in this paper. Firstly, we propose a hierarchical paragraph-level topic structure representation with three layers to guide the corpus construction. Then, we employ a two-stage man-machine collaborative annotation method to construct the largest Chinese Paragraph-level Topic Structure corpus (CPTS), achieving high quality. We also build several strong baselines, including ChatGPT, to validate the computability of CPTS on two fundamental tasks (topic segmentation and outline generation) and preliminarily verified its usefulness for the downstream task (discourse parsing).
Most neural abstractive summarization models are capable of producing high-quality summaries. However, they still frequently contain factual errors. Existing factuality-oriented abstractive summarization models only consider the integration of factual information and ignore the causes of factual errors. To address this issue, we propose a factuality-oriented abstractive summarization model DASum, which is based on a new task factual relation discrimination that is able to identify the causes of factual errors. First, we use data augmentation methods to construct counterfactual summaries (i. e., negative samples), and build a factual summarization dataset. Then, we propose the factual relation discrimination task, which determines the factuality of the dependency relations in summaries during summary generation and guides our DASum to generate factual relations, thereby improving the factuality of summaries. Experimental results on the CNN/DM and XSUM datasets show that our DASum outperforms several state-of-the-art benchmarks in terms of the factual metrics.
Automatic Essay Scoring (AES) is the task of using the computer to evaluate the quality of essays automatically. Current research on AES focuses on scoring the overall quality or single trait of prompt-specific essays. However, the users not only expect to obtain the overall score but also the instant feedback from different traits to help their writing in the real world. Therefore, we first annotate a mutli-trait dataset ACEA including 1220 argumentative essays from four traits, i.e., essay organization, topic, logic, and language. And then we design a hierarchical multi-task trait scorer HMTS to evaluate the quality of writing by modeling these four traits. Moreover, we propose an inter-sequence attention mechanism to enhance information interaction between different tasks and design the trait-specific features for various tasks in AES. The experimental results on ACEA show that our HMTS can effectively score essays from multiple traits, outperforming several strong models.
Implicit discourse relation recognition (IDRR) is a critical task in discourse analysis. Previous studies only regard it as a classification task and lack an in-depth understanding of the semantics of different relations. Therefore, we first view IDRR as a generation task and further propose a method joint modeling of the classification and generation. Specifically, we propose a joint model, CG-T5, to recognize the relation label and generate the target sentence containing the meaning of relations simultaneously. Furthermore, we design three target sentence forms, including the question form, for the generation model to incorporate prior knowledge. To address the issue that large discourse units are hardly embedded into the target sentence, we also propose a target sentence construction mechanism that automatically extracts core sentences from those large discourse units. Experimental results both on Chinese MCDTB and English PDTB datasets show that our model CG-T5 achieves the best performance against several state-of-the-art systems.
Discourse structure tree construction is the fundamental task of discourse parsing and most previous work focused on English. Due to the cultural and linguistic differences, existing successful methods on English discourse parsing cannot be transformed into Chinese directly, especially in paragraph level suffering from longer discourse units and fewer explicit connectives. To alleviate the above issues, we propose two reading modes, i.e., the global backward reading and the local reverse reading, to construct Chinese paragraph level discourse trees. The former processes discourse units from the end to the beginning in a document to utilize the left-branching bias of discourse structure in Chinese, while the latter reverses the position of paragraphs in a discourse unit to enhance the differentiation of coherence between adjacent discourse units. The experimental results on Chinese MCDTB demonstrate that our model outperforms all strong baselines.
Discourse parsing is a challenging task and plays a critical role in discourse analysis. This paper focus on the macro level discourse structure analysis, which has been less studied in the previous researches. We explore a macro discourse structure presentation schema to present the macro level discourse structure, and propose a corresponding corpus, named Macro Chinese Discourse Treebank. On these bases, we concentrate on two tasks of macro discourse structure analysis, including structure identification and nuclearity recognition. In order to reduce the error transmission between the associated tasks, we adopt a joint model of the two tasks, and an Integer Linear Programming approach is proposed to achieve global optimization with various kinds of constraints.
In view of the differences between the annotations of micro and macro discourse rela-tionships, this paper describes the relevant experiments on the construction of the Macro Chinese Discourse Treebank (MCDTB), a higher-level Chinese discourse corpus. Fol-lowing RST (Rhetorical Structure Theory), we annotate the macro discourse information, including discourse structure, nuclearity and relationship, and the additional discourse information, including topic sentences, lead and abstract, to make the macro discourse annotation more objective and accurate. Finally, we annotated 720 articles with a Kappa value greater than 0.6. Preliminary experiments on this corpus verify the computability of MCDTB.