Xiaolong Xu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Huatuo-26M, a Large-scale Chinese Medical QA Dataset
Xidong Wang | Jianquan Li | Shunian Chen | Yuxuan Zhu | Xiangbo Wu | Zhiyi Zhang | Xiaolong Xu | Junying Chen | Jie Fu | Xiang Wan | Anningzhe Gao | Benyou Wang
Findings of the Association for Computational Linguistics: NAACL 2025

Large Language Models infuse newfound vigor into the advancement of the medical domain, yet the scarcity of data poses a significant bottleneck hindering community progress. In this paper, we release the largest ever medical Question Answering (QA) dataset with 26 Million QA pairs named Huatuo-26M. We benchmark many existing approaches in our dataset in terms of both retrieval and generation. We also experimentally show the benefit of the proposed dataset in many aspects: (i) it serves as a fine-tuning data for training medical Large Language Models (LLMs); (ii) it works as an external knowledge source for retrieval-augmented generation (RAG); (iii) it demonstrates transferability by enhancing zero-shot performance on other QA datasets; and (iv) it aids in training biomedical model as a pre-training corpus. Our empirical findings substantiate the dataset’s utility in these domains, thereby confirming its significance as a resource in the medical QA landscape.