Xiaole Wen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
AMANDA: Agentic Medical Knowledge Augmentation for Data-Efficient Medical Visual Question Answering
Ziqing Wang | Chengsheng Mao | Xiaole Wen | Yuan Luo | Kaize Ding
Findings of the Association for Computational Linguistics: EMNLP 2025

Medical Multimodal Large Language Models (Med-MLLMs) have shown great promise in medical visual question answering (Med-VQA). However, when deployed in low-resource settings where abundant labeled data are unavailable, existing Med-MLLMs commonly fail due to their medical reasoning capability bottlenecks: (i) the intrinsic reasoning bottleneck that ignores the details from the medical image; (ii) the extrinsic reasoning bottleneck that fails to incorporate specialized medical knowledge. To address those limitations, we propose AMANDA, a training-free agentic framework that performs medical knowledge augmentation via LLM agents. Specifically, our intrinsic medical knowledge augmentation focuses on coarse-to-fine question decomposition for comprehensive diagnosis, while extrinsic medical knowledge augmentation grounds the reasoning process via biomedical knowledge graph retrieval. Extensive experiments across eight Med-VQA benchmarks demonstrate substantial improvements in both zero-shot and few-shot Med-VQA settings. The code is available at https://github.com/REAL-Lab-NU/AMANDA.