Xiaojuan Tang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
RulE: Knowledge Graph Reasoning with Rule Embedding
Xiaojuan Tang | Song-Chun Zhu | Yitao Liang | Muhan Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Knowledge graph reasoning is an important problem for knowledge graphs. In this paper, we propose a novel and principled framework called RulE (stands for Rule Embedding) to effectively leverage logical rules to enhance KG reasoning. Unlike knowledge graph embedding methods, RulE learns rule embeddings from existing triplets and first-order rules by jointly representing entities, relations and logical rules in a unified embedding space. Based on the learned rule embeddings, a confidence score can be calculated for each rule, reflecting its consistency with the observed triplets. This allows us to perform logical rule inference in a soft way, thus alleviating the brittleness of logic. On the other hand, RulE injects prior logical rule information into the embedding space, enriching and regularizing the entity/relation embeddings. This makes KGE alone perform better too. RulE is conceptually simple and empirically effective. We conduct extensive experiments to verify each component of RulE.Results on multiple benchmarks reveal that our model outperforms the majority of existing embedding-based and rule-based approaches.