This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
XiaofengZhou
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) continue to set new standards in knowledge-intensive and complex reasoning tasks, yet their high computational demands limit widespread adoption. While distilling large models into smaller ones offers a sustainable solution, current techniques—such as static knowledge distillation, resource-intensive reinforcement learning from human feedback, or limited self-reflection—struggle to yield substantial and lasting performance gains. In this paper, we present a novel Debate and Reflect (D&R) framework that orchestrates multi-turn debates between smaller models and stronger teacher models, eliciting actionable feedback (e.g., error analysis, corrective strategies) to guide student models. Further, we introduce Tree-structured Direct Preference Optimization (T-DPO) to efficiently leverage these debate logs, organizing interactions into a hierarchical format for effective training. Empirical evaluations across diverse NLP benchmarks demonstrate that our approach significantly improves smaller-model accuracy, robustness, and generalization, outperforming conventional baselines by a large margin.
Large Language Models (LLMs) demonstrate significant value in domain-specific applications, benefiting from their fundamental capabilities. Nevertheless, it is still unclear which fundamental capabilities contribute to success in specific domains. Moreover, the existing benchmark-based evaluation cannot effectively reflect the performance of real-world applications. In this survey, we review recent advances of LLMs in domain applications, aiming to summarize the fundamental capabilities and their collaboration. Furthermore, we establish connections between fundamental capabilities and specific domains, evaluating the varying importance of different capabilities. Based on our findings, we propose a reliable strategy for domains to choose more robust backbone LLMs for real-world applications.
This paper describes the models designated for the MEDIQA 2019 shared tasks by the team PANLP. We take advantages of the recent advances in pre-trained bidirectional transformer language models such as BERT (Devlin et al., 2018) and MT-DNN (Liu et al., 2019b). We find that pre-trained language models can significantly outperform traditional deep learning models. Transfer learning from the NLI task to the RQE task is also experimented, which proves to be useful in improving the results of fine-tuning MT-DNN large. A knowledge distillation process is implemented, to distill the knowledge contained in a set of models and transfer it into an single model, whose performance turns out to be comparable with that obtained by the ensemble of that set of models. Finally, for test submissions, model ensemble and a re-ranking process are implemented to boost the performances. Our models participated in all three tasks and ranked the 1st place for the RQE task, and the 2nd place for the NLI task, and also the 2nd place for the QA task.