XiaoBing Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Multimodal Neural Machine Translation with Search Engine Based Image Retrieval
ZhenHao Tang | XiaoBing Zhang | Zi Long | XiangHua Fu
Proceedings of the 9th Workshop on Asian Translation

Recently, numbers of works shows that the performance of neural machine translation (NMT) can be improved to a certain extent with using visual information. However, most of these conclusions are drawn from the analysis of experimental results based on a limited set of bilingual sentence-image pairs, such as Multi30K.In these kinds of datasets, the content of one bilingual parallel sentence pair must be well represented by a manually annotated image,which is different with the actual translation situation. we propose an open-vocabulary image retrieval methods to collect descriptive images for bilingual parallel corpus using image search engine, and we propose text-aware attentive visual encoder to filter incorrectly collected noise images. Experiment results on Multi30K and other two translation datasets show that our proposed method achieves significant improvements over strong baselines.