Xiaobin Zhao

Also published as: 小兵


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
TiKEM:基于知识增强的藏文预训练语言模型(TiKEM: Knowledge Enhanced Tibetan Pre-trained Language Model)
Junjie Deng (邓俊杰) | Long Chen (陈龙) | Yan Zhang (张廷) | YUan Sun (孙媛) | Xiaobin Zhao (赵小兵)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“预训练语言模型在中英文领域有着优异的表现,而低资源语言数据获取难度大,预训练语言模型在低资源语言如藏文上的研究刚取得初步进展。现有的藏文预训练语言模型,使用大规模无结构的文本语料库进行自监督学习,缺少外部知识指导,知识记忆能力和知识推理能力受限。为了解决以上问题,本文构建含有50万个三元组知识的藏文知识增强预训练数据集,联合结构化的知识表示和无结构化的文本表示,训练基于知识增强的藏文预训练语言模型TiKEM,以提高模型的知识记忆和推理能力。最后,本文在文本分类、实体关系分类和机器阅读理解三个下游任务中验证了模型的有效性。”