Xiao Zhan


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Unlearning vs. Obfuscation: Are We Truly Removing Knowledge?
Guangzhi Sun | Potsawee Manakul | Xiao Zhan | Mark Gales
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Unlearning has emerged as a critical capability for large language models (LLMs) to support data privacy, regulatory compliance, and ethical AI deployment. Recent techniques often rely on obfuscation by injecting incorrect or irrelevant information to suppress knowledge. Such methods effectively constitute knowledge addition rather than true removal, often leaving models vulnerable to probing. In this paper, we formally distinguish unlearning from obfuscation and introduce a probing-based evaluation framework to assess whether existing approaches genuinely remove targeted information. Moreover, we propose DF-MCQ, a novel unlearning method that flattens the model predictive distribution over automatically generated multiple-choice questions using KL-divergence, effectively removing knowledge about target individuals and triggering appropriate refusal behaviour. Experimental results demonstrate that DF-MCQ achieves unlearning with over 90% refusal rate and a random choice-level uncertainty that is much higher than obfuscation on probing questions.