Xiao Dong


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Debiasing Static Embeddings for Hate Speech Detection
Ling Sun | Soyoung Kim | Xiao Dong | Sandra Kübler
Proceedings of the The 9th Workshop on Online Abuse and Harms (WOAH)

We examine how embedding bias affects hate speech detection by evaluating two debiasing methods—hard-debiasing and soft-debiasing. We analyze stereotype and sentiment associations within the embedding space and assess whether debiased models reduce censorship of marginalized authors while improving detection of hate speech targeting these groups. Our findings highlight how embedding bias propagates into downstream tasks and demonstrates how well different embedding bias metrics can predict bias in hate speech detection.