Xiangyuan Xue


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ReSo: A Reward-driven Self-organizing LLM-based Multi-Agent System for Reasoning Tasks
Heng Zhou | Hejia Geng | Xiangyuan Xue | Li Kang | Yiran Qin | Zhiyong Wang | Zhenfei Yin | Lei Bai
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multi-agent systems have emerged as a promising approach for enhancing the reasoning capabilities of large language models in complex problem-solving. However, current MAS frameworks are limited by poor flexibility and scalability, with underdeveloped optimization strategies. To address these challenges, we propose ReSo, which integrates task graph generation with a reward-driven two-stage agent selection process. The core of ReSo is the proposed Collaborative Reward Model, which can provide fine-grained reward signals for MAS cooperation for optimization. We also introduce an automated data synthesis framework for generating MAS benchmarks, without human annotations. Experimentally, ReSo matches or outperforms existing methods. ReSo achieves 33.7% and 32.3% accuracy on Math-MAS and SciBench-MAS SciBench, while other methods completely fail. The code and data are available at [Reso](https://github.com/hengzzzhou/ReSo).