Xiangyu Zhang

Other people with similar names: Xiangyu Zhang, Xiangyu Zhang

Unverified author pages with similar names: Xiangyu Zhang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SpeechT-RAG: Reliable Depression Detection in LLMs with Retrieval-Augmented Generation Using Speech Timing Information
Xiangyu Zhang | Hexin Liu | Qiquan Zhang | Beena Ahmed | Julien Epps
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have been increasingly adopted for health-related tasks, yet their performance in depression detection remains limited when relying solely on text input. While Retrieval-Augmented Generation (RAG) typically enhances LLM capabilities, our experiments indicate that traditional text-based RAG systems struggle to significantly improve depression detection accuracy. This challenge stems partly from the rich depression-relevant information encoded in acoustic speech patterns — information that current text-only approaches fail to capture effectively. To address this limitation, we conduct a systematic analysis of temporal speech patterns, comparing healthy individuals with those experiencing depression. Based on our findings, we introduce Speech Timing-based Retrieval-Augmented Generation, SpeechT-RAG, a novel system that leverages speech timing features for both accurate depression detection and reliable confidence estimation. This integrated approach not only outperforms traditional text-based RAG systems in detection accuracy but also enhances uncertainty quantification through a confidence scoring mechanism that naturally extends from the same temporal features. Our unified framework achieves comparable results to fine-tuned LLMs without additional training while simultaneously addressing the fundamental requirements for both accuracy and trustworthiness in mental health assessment