Xiangsheng Zhou


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network
Hongjie Cai | Yaofeng Tu | Xiangsheng Zhou | Jianfei Yu | Rui Xia
Proceedings of the 28th International Conference on Computational Linguistics

Most of the aspect based sentiment analysis research aims at identifying the sentiment polarities toward some explicit aspect terms while ignores implicit aspects in text. To capture both explicit and implicit aspects, we focus on aspect-category based sentiment analysis, which involves joint aspect category detection and category-oriented sentiment classification. However, currently only a few simple studies have focused on this problem. The shortcomings in the way they defined the task make their approaches difficult to effectively learn the inner-relations between categories and the inter-relations between categories and sentiments. In this work, we re-formalize the task as a category-sentiment hierarchy prediction problem, which contains a hierarchy output structure to first identify multiple aspect categories in a piece of text, and then predict the sentiment for each of the identified categories. Specifically, we propose a Hierarchical Graph Convolutional Network (Hier-GCN), where a lower-level GCN is to model the inner-relations among multiple categories, and the higher-level GCN is to capture the inter-relations between aspect categories and sentiments. Extensive evaluations demonstrate that our hierarchy output structure is superior over existing ones, and the Hier-GCN model can consistently achieve the best results on four benchmarks.