Xianfei Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles
Kuang Wang | Xianfei Li | Shenghao Yang | Li Zhou | Feng Jiang | Haizhou Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, current role-playing methods face challenges such as a lack of utterance-level authenticity and user-level diversity, often hindered by role confusion and dependence on predefined profiles of well-known figures. In contrast, direct simulation focuses solely on text, neglecting implicit user traits like personality and conversation-level consistency. To address these issues, we introduce the User Simulator with Implicit Profiles (USP), a framework that infers implicit user profiles from human-machine interactions to simulate personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema, then refine the simulation using conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing at both the utterance and conversation levels. Finally, a diverse profile sampler captures the distribution of real-world user profiles. Experimental results show that USP outperforms strong baselines in terms of authenticity and diversity while maintaining comparable consistency. Additionally, using USP to evaluate LLM on dynamic multi-turn aligns well with mainstream benchmarks, demonstrating its effectiveness in real-world applications.