Xi Ma


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Probabilistic Toolkit for Multi-grained Word Segmentation in Chinese
Xi Ma | Yang Hou | Xuebin Wang | Zhenghua Li
Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations

It is practically useful to provide consistent and reliable word segmentation results from different criteria at the same time, which is formulated as the multi-grained word segmentation (MWS) task. This paper describes a probabilistic toolkit for MWS in Chinese. We propose a new MWS approach based on the standard MTL framework. We adopt semi-Markov CRF for single-grained word segmentation (SWS), which can produce marginal probabilities of words during inference. For sentences that contain conflicts among SWS results, we employ the CKY decoding algorithm to resolve conflicts.Our resulting MWS tree can provide the criteria information of words, along with the probabilities. Moreover, we follow the works in SWS, and propose a simple strategy to exploit naturally annotated data for MWS, leading to substantial improvement of MWS performance in the cross-domain scenario.