Wuwei Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Query-Focused Retrieval Heads Improve Long-Context Reasoning and Re-ranking
Wuwei Zhang | Fangcong Yin | Howard Yen | Danqi Chen | Xi Ye
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent work has identified retrieval heads (Wu et al., 2025), a subset of attention heads responsible for retrieving salient information in long-context language models (LMs), as measured by their copy-paste behavior in Needle-in-a-Haystack tasks. In this paper, we introduce QRHead (Query-Focused Retrieval Head), an improved set of attention heads that enhance retrieval from long context. We identify QRHead by aggregating attention scores with respect to the input query, using a handful of examples from real-world tasks (e.g., long-context QA). We further introduce QRRetriever, an efficient and effective retriever that uses the accumulated attention mass of QRHead as retrieval scores. We use QRRetriever for long-context reasoning by selecting the most relevant parts with the highest retrieval scores. On multi-hop reasoning tasks LongMemEval and CLIPPER, this yields over 10% performance gains over full context and outperforms strong dense retrievers. We also evaluate QRRetriever as a re-ranker on the BEIR benchmark and find that it achieves strong zero-shot performance, outperforming other LLM-based re-rankers such as RankGPT. Further analysis shows that both the query-context attention scoring and task selection are crucial for identifying QRHead with strong downstream utility. Overall, our work contributes a general-purpose retriever and offers interpretability insights into the long-context capabilities of LMs.