Wu Yang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Revisiting Interpolation Augmentation for Speech-to-Text Generation
Chen Xu | Jie Wang | Xiaoqian Liu | Qian Dong | Chunliang Zhang | Tong Xiao | JingBo Zhu | Dapeng Man | Wu Yang
Findings of the Association for Computational Linguistics: ACL 2024

Speech-to-text (S2T) generation systems frequently face challenges in low-resource scenarios, primarily due to the lack of extensive labeled datasets. One emerging solution is constructing virtual training samples by interpolating inputs and labels, which has notably enhanced system generalization in other domains. Despite its potential, this technique’s application in S2T tasks has remained under-explored. In this paper, we delve into the utility of interpolation augmentation, guided by several pivotal questions. Our findings reveal that employing an appropriate strategy in interpolation augmentation significantly enhances performance across diverse tasks, architectures, and data scales, offering a promising avenue for more robust S2T systems in resource-constrained settings.