This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
WernerWiniwarter
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In this paper we introduce a novel sentence annotation based on radical construction grammar and Uniform Meaning Representation, which covers all levels of linguistic analysis, from interlinear morphemic glossing to PropBank rolesets, WordNet synsets, and Wikipedia page titles as concept identifiers. We visually enhance our annotation by using images to represent concepts, emojis for thematic roles, and color-coding for constructions. The meaning representation is embedded into the syntactic parse by aligning all concepts with the surface tokens in the sentence. The main motivation for developing this type of representation was its use in second language acquisition as part of a Web-based language learning environment. In entertaining and engaging annotation tasks language students assemble the representation step-by-step following a bottom-up strategy. Based on language exposure while performing these exercises, we populate personal idiolectal constructicons representing the students’ current status of second language comprehension. As first use case, we have implemented a solution for Japanese due to its soaring popularity in our language education program and the particular challenges involved with trying to master this language.
In this paper, we introduce a novel meaning representation, which is based on AMR but extends it towards a visual ontological representation. We visualize concepts by representative images, and roles by emojis. All concepts are identified either by PropBank rolesets, Wikipedia page titles, WordNet synsets, or Wikidata lexeme senses. We have developed a Web-based annotation environment enabled by augmented browsing and interactive diagramming. As first application, we have implemented a multilingual annotation solution by using English as anchor language and comparing it with French and Japanese language versions. Therefore, we have extended our representation by a translation deviation annotation to document the differences between the language versions. The intended user groups are, besides professional translators and interpreters, students of translation, language, and literary studies. We describe a first use case in which we use novels by French authors and compare them with their English and Japanese translations. The main motivation for choosing Japanese is the soaring popularity of Japanese courses at our university and the particular challenges involved with trying to master this language.
In this paper, we present a novel approach for building kanji dictionaries by enriching the lexical data of 3,500 kanji with images, structural decompositions, and semantically based cross-media mappings from the textual to the visual dimension. Our kanji dictionary is part of a Web-based contextual language learning environment based on augmented browsing technology. We display our multimodal kanji information as kanji cards in the Web browser, offering a versatile representation that can be integrated into other advanced creative language learning applications, such as memorization puzzles, creative storytelling assignments, or educational games.