This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
WenyuanZhang
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Instruction tuning for large language models (LLMs) can drive them to produce results consistent with human goals in specific downstream tasks. However, the process of continual instruction tuning (CIT) for LLMs may bring about the catastrophic forgetting (CF) problem, where previously learned abilities are degraded. Recent methods try to alleviate the CF problem by modifying models or replaying data, which may only remember the surface-level pattern of instructions and get confused on held-out tasks. In this paper, we propose a novel continual instruction tuning method based on Key-part Information Gain (KPIG). Our method computes the information gain on masked parts to dynamically replay data and refine the training objective, which enables LLMs to capture task-aware information relevant to the correct response and alleviate overfitting to general descriptions in instructions. In addition, we propose two metrics, P-score and V-score, to measure the generalization and instruction-following abilities of LLMs. Experiments demonstrate our method achieves superior performance on both seen and held-out tasks.
Despite the abundance of prior social strategies possessed by humans, there remains a paucity of research dedicated to their transfer and integration into social agents. Our proposed SOTOPIA-Ω framework aims to address and bridge this gap, with a particular focus on enhancing the social capabilities of language agents. This framework dynamically injects a variety of social strategies into expert agents, thereby automating the construction of high-quality social dialogue training corpus. Additionally, we introduce the concept of Social Instruction Following (S-IF) and propose two new S-IF evaluation metrics that are complementary to social capability. We demonstrate that several 7B models trained on high-quality corpus not only significantly surpasses the expert agent (GPT-4) in achieving social goals but also enhances S-IF performance. Analysis and variant experiments validate the advantages of dynamic construction, which can especially break the agent’s prolonged deadlock.
The significant computational demands of large language models have increased interest in distilling reasoning abilities into smaller models via Chain-of-Thought (CoT) distillation. Current CoT distillation methods mainly focus on transferring teacher-generated rationales for complex reasoning to student models. However, they do not adequately explore teachers’ dynamic attention toward critical information during reasoning. We find that language models exhibit progressive attention shifts towards key information during reasoning, which implies essential clues for drawing conclusions. Building on this observation and analysis, we introduce a novel CoT distillation framework that transfers the teacher’s stepwise attention on key information to the student model. This establishes structured guidance for the student’s progressive concentration on key information during reasoning. More importantly, we develop a Mixture of Layers module enabling dynamic alignment that adapts to different layers between the teacher and student. Our method achieves consistent performance improvements across multiple mathematical and commonsense reasoning datasets. To our knowledge, it is the first method to leverage stepwise attention within CoT distillation to improve small model reasoning.
Large language model (LLM) role-playing has gained widespread attention. Authentic character knowledge is crucial for constructing realistic LLM role-playing agents. However, existing works usually overlook the exploration of LLMs’ ability to detect characters’ known knowledge errors (KKE) and unknown knowledge errors (UKE) while playing roles, which would lead to low-quality automatic construction of character trainable corpus. In this paper, we propose RoleKE-Bench to evaluate LLMs’ ability to detect errors in KKE and UKE. The results indicate that even the latest LLMs struggle to detect these two types of errors effectively, especially when it comes to familiar knowledge. We experimented with various reasoning strategies and propose an agent-based reasoning method, Self-Recollection and Self-Doubt (S2RD), to explore further the potential for improving error detection capabilities.
Multimodal entity linking (MEL) aims to link ambiguous mentions in multimodal contexts to entities in a multimodal knowledge graph. A pivotal challenge is to fully leverage multi-element correlations between mentions and entities to bridge modality gap and enable fine-grained semantic matching. Existing methods attempt several local correlative mechanisms, relying heavily on the automatically learned attention weights, which may over-concentrate on partial correlations. To mitigate this issue, we formulate the correlation assignment problem as an optimal transport (OT) problem, and propose a novel MEL framework, namely OT-MEL, with OT-guided correlation assignment. Thereby, we exploit the correlation between multimodal features to enhance multimodal fusion, and the correlation between mentions and entities to enhance fine-grained matching. To accelerate model prediction, we further leverage knowledge distillation to transfer OT assignment knowledge to attention mechanism. Experimental results show that our model significantly outperforms previous state-of-the-art baselines and confirm the effectiveness of the OT-guided correlation assignment.
Fine-grained entity typing (FET) is an essential task in natural language processing that aims to assign semantic types to entities in text. However, FET poses a major challenge known as the noise labeling problem, whereby current methods rely on estimating noise distribution to identify noisy labels but are confused by diverse noise distribution deviation. To address this limitation, we introduce Co-Prediction Prompt Tuning for noise correction in FET, which leverages multiple prediction results to identify and correct noisy labels. Specifically, we integrate prediction results to recall labeled labels and utilize a differentiated margin to identify inaccurate labels. Moreover, we design an optimization objective concerning divergent co-predictions during fine-tuning, ensuring that the model captures sufficient information and maintains robustness in noise identification. Experimental results on three widely-used FET datasets demonstrate that our noise correction approach significantly enhances the quality of various types of training samples, including those annotated using distant supervision, ChatGPT, and crowdsourcing.
Named entity recognition (NER) is a fundamental task in natural language processing that aims to identify and classify named entities in text. However, span-based methods for NER typically assign entity types to text spans, resulting in an imbalanced sample space and neglecting the connections between non-entity and entity spans. To address these issues, we propose a novel approach for NER, named the Boundary Offset Prediction Network (BOPN), which predicts the boundary offsets between candidate spans and their nearest entity spans. By leveraging the guiding semantics of boundary offsets, BOPN establishes connections between non-entity and entity spans, enabling non-entity spans to function as additional positive samples for entity detection. Furthermore, our method integrates entity type and span representations to generate type-aware boundary offsets instead of using entity types as detection targets. We conduct experiments on eight widely-used NER datasets, and the results demonstrate that our proposed BOPN outperforms previous state-of-the-art methods.