Wenshuo Feng

Also published as: 文铄


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
PGA-SciRE:基于大语言模型的数据增强框架进行科学领域的关系(PGA-SciRE:Harnessing LLM on Data Augmentation for Enhancing Scientific Relation Extraction)
Yang Zhou (周洋) | Shimin Dan (单世民) | Hongkui Wei (魏宏夔) | Zhehuan Zhao (赵哲焕) | Wenshuo Feng (冯文铄)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“关系提取旨在识别文本中提到的实体对之间的关系。大语言模型的进步对自然语言处理任务产生了巨大的影响。在这项工作中,我们针对科学领域的关系抽取任务,提出一个名为PGA的数据增强框架,用于提升模型在科学领域的关系抽取的性能。框架引入了两种数据增强的方式,利用大语言模型通过转述原训练集样本,得到句意相同但具备不同表述和形式的伪样本。以及指导大语言模型根据原训练集样本的关系和实体标签,生成暗含对应标签信息的句子。这两种伪样本分别与原数据集共同参与关系抽取模型的训练。实验中PGA框架提高了三个主流模型的科学领域内关系抽取的F1分数。同时,使用大语言模型获得样本也能有效减少人工标注数据的成本。”