Wenqiang Bai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
YNU-HPCC at SemEval-2022 Task 4: Finetuning Pretrained Language Models for Patronizing and Condescending Language Detection
Wenqiang Bai | Jin Wang | Xuejie Zhang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes a system built in the SemEval-2022 competition. As participants in Task 4: Patronizing and Condescending Language Detection, we implemented the text sentiment classification system for two subtasks in English. Both subtasks involve determining emotions; subtask 1 requires us to determine whether the text belongs to the PCL category (single-label classification), and subtask 2 requires us to determine to which PCL category the text belongs (multi-label classification). Our system is based on the bidirectional encoder representations from transformers (BERT) model. For the single-label classification, our system applies a BertForSequenceClassification model to classify the input text. For the multi-label classification, we use the fine-tuned BERT model to extract the sentiment score of the text and a fully connected layer to classify the text into the PCL categories. Our system achieved relatively good results on the competition’s official leaderboard.