This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
WenjunLi
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) have shown remarkable emergent capabilities, transforming the execution of functional tasks by leveraging external tools for complex problems that require specialized processing or up-to-date data. While existing research expands LLMs access to diverse tools (e.g., program interpreters, search engines, calculators), the necessity of using these tools is often overlooked, leading to indiscriminate tool invocation. This naive approach raises two key issues: increased latency due to unnecessary tool calls, and potential errors resulting from faulty interactions with external tools. In this paper, we introduce meta-cognition as a proxy for LLMs self-assessment of their capabilities, reflecting the model’s awareness of its own limitations. Based on this, we propose MeCo, an adaptive decision-making strategy for external tool use. MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space, guiding when to invoke tools. Notably, MeCo is fine-tuning-free and incurs minimal cost. Experiments across multiple backbone models and benchmarks show that MeCo reliably detects LLMs’ internal cognitive signals and significantly improves tool-use decision-making.
Large language models (LLMs) have demonstrated impressive task-solving capabilities through prompting techniques and system designs, including solving planning tasks (e.g., math proofs, basic travel planning) when sufficient data is available online and used during pre-training. However, for planning tasks with limited prior data (e.g., blocks world, advanced travel planning), the performance of LLMs, including proprietary models like GPT and Gemini, is poor. This paper investigates the impact of fine-tuning on the planning capabilities of LLMs, revealing that LLMs can achieve strong performance in planning through substantial (tens of thousands of specific examples) fine-tuning. Yet, this process incurs high economic, time, and computational costs for each planning problem variation. To address this, we propose Clustering-Based Maximum Diversity Sampling (CMDS), which selects diverse and representative data to enhance sample efficiency and the model’s generalization capability. Extensive evaluations demonstrate that CMDS-l, a baseline method combining CMDS with language embeddings, outperforms random sampling. Furthermore, we introduce a novel algorithm, CMDS-g, which encodes planning task instances with their graph representations into the embedding space. Empirical results show that CMDS-g consistently outperforms baseline methods across various scales and multiple benchmark domains.
Opioid related aberrant behaviors (ORABs) present novel risk factors for opioid overdose. This paper introduces a novel biomedical natural language processing benchmark dataset named ODD, for ORAB Detection Dataset. ODD is an expert-annotated dataset designed to identify ORABs from patients’ EHR notes and classify them into nine categories; 1) Confirmed Aberrant Behavior, 2) Suggested Aberrant Behavior, 3) Opioids, 4) Indication, 5) Diagnosed opioid dependency, 6) Benzodiazepines, 7) Medication Changes, 8) Central Nervous System-related, and 9) Social Determinants of Health. We explored two state-of-the-art natural language processing models (fine-tuning and prompt-tuning approaches) to identify ORAB. Experimental results show that the prompt-tuning models outperformed the fine-tuning models in most categories and the gains were especially higher among uncommon categories (Suggested Aberrant Behavior, Confirmed Aberrant Behaviors, Diagnosed Opioid Dependence, and Medication Change). Although the best model achieved the highest 88.17% on macro average area under precision recall curve, uncommon classes still have a large room for performance improvement. ODD is publicly available.