Wenjun Kang

Also published as: 文军


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
基于增量预训练与外部知识的古文历史事件检测
Wenjun Kang (康文军) | Jiali Zuo (左家莉) | Yiyu Hu (胡益裕) | Mingwen Wang (王明文)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“古文历史事件检测任务旨在识别文本中的事件触发词和类型。为了解决传统pipeline方法容易产生级联错误传播,以及大多数事件检测方法仅依赖句子层面信息的问题,本文提出了一种结合外部信息和全局对应矩阵的联合抽取模型EIGC,以实现触发词和事件类型的精确抽取。此外,本文还整理了一个包含“二十四史”等古汉语文献的数据集,共计约97万条古汉语文本,并利用该文本对BERT-Ancient-Chinese进行增量预训练。最终,本文所提出的模型在三个任务上的总F1值达到了76.2%,验证了该方法的有效性。”

2023

pdf bib
融合词典信息的古籍命名实体识别研究(A Study on the Recognition of Named Entities of Ancient Books Using Lexical Information)
Wenjun Kang (康文军) | Jiali Zuo (左家莉) | Anquan Jie (揭安全) | Wenbin Luo (罗文兵) | Mingwen Wang (王明文)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“古籍命名实体识别对于古籍实体知识库与语料库的建设具有显著的现实意义。目前古籍命名实体识别的研究较少,主要原因是缺乏足够的训练语料。本文从《资治通鉴》入手,人工构建了一份古籍命名实体识别数据集,以此展开对古籍命名实体识别任务的研究。针对古籍文本多以单字表意且存在大量省略的语言特点,本文采用预训练词向量作为词典信息,充分利用其中蕴涵的词汇信息。实验表明,这种方法可以有效处理古籍文本中人名实体识别的问题。”