Wen Yao


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration
Shao Zhang | Xihuai Wang | Wenhao Zhang | Chaoran Li | Junru Song | Tingyu Li | Lin Qiu | Xuezhi Cao | Xunliang Cai | Wen Yao | Weinan Zhang | Xinbing Wang | Ying Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent *System 1* and *System 2* methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates *System 1* and *System 2* for efficient real-time simultaneous human-AI collaboration. DPT-Agent’s *System 1* uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent’s *System 2* integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.

pdf bib
SafeConf: A Confidence-Calibrated Safety Self-Evaluation Method for Large Language Models
Bo Zhang | Cong Gao | Linkang Yang | Bingxu Han | Minghao Hu | Zhunchen Luo | Guotong Geng | Xiaoying Bai | Jun Zhang | Wen Yao | Zhong Wang
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) have achieved groundbreaking progress in Natural Language Processing (NLP). Despite the numerous advantages of LLMs, they also pose significant safety risks. Self-evaluation mechanisms have gained increasing attention as a key safeguard to ensure safe and controllable content generation. However, LLMs often exhibit overconfidence, which seriously compromises the accuracy of safety self-evaluation. To address this challenge, we propose SafeConf, a method to enhance the safety self-evaluation capability of LLMs through confidence calibration. The method performs semantic mutations on the original safety evaluation questions and adopts a self-consistency strategy to quantify confidence based on answer accuracy on the mutated questions. Finally, these confidence scores are used to construct a dataset for fine-tuning. We conducte experiments on both Chinese and English datasets. The results show that SafeConf improves self-evaluation accuracy by an average of 5.86% and 7.79% over the state-of-the-art baseline methods on Qwen2.5-7B-Instruct and Llama3-8B-Instruct models, respectively, without affecting the general capabilities of the models.