This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Wen-BinHan
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Detecting opinion expression is a potential and essential task in opinion mining that can be extended to advanced tasks. In this paper, we considered opinion expression detection as a sequence labeling task and exploited different deep contextualized embedders into the state-of-the-art architecture, composed of bidirectional long short-term memory (BiLSTM) and conditional random field (CRF). Our experimental results show that using different word embeddings can cause contrasting results, and the model can achieve remarkable scores with deep contextualized embeddings. Especially, using BERT embedder can significantly exceed using ELMo embedder.
We introduce a method for generating suggestions on a given sentence for improving the proficiency level. In our approach, the sentence is transformed into a sequence of grammatical elements aimed at providing suggestions of more advanced grammar elements based on originals. The method involves parsing the sentence, identifying grammatical elements, and ranking related elements to recommend a higher level of grammatical element. We present a prototype tutoring system, Level-Up, that applies the method to English learners’ essays in order to assist them in writing and reading. Evaluation on a set of essays shows that our method does assist user in writing.
We introduce a system aimed at improving and expanding second language learners’ English vocabulary. In addition to word definitions, we provide rich lexical information such as collocations and grammar patterns for target words. We present Linggle Booster that takes an article, identifies target vocabulary, provides lexical information, and generates a quiz on target words. Linggle Booster also links named-entity to corresponding Wikipedia pages. Evaluation on a set of target words shows that the method have reasonably good performance in terms of generating useful and information for learning vocabulary.