Weizu Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
KeFVP: Knowledge-enhanced Financial Volatility Prediction
Hao Niu | Yun Xiong | Xiaosu Wang | Wenjing Yu | Yao Zhang | Weizu Yang
Findings of the Association for Computational Linguistics: EMNLP 2023

Financial volatility prediction is vital for indicating a company’s risk profile. Transcripts of companies’ earnings calls are important unstructured data sources to be utilized to access companies’ performance and risk profiles. However, current works ignore the role of financial metrics knowledge (such as EBIT, EPS, and ROI) in transcripts, which is crucial for understanding companies’ performance, and little consideration is given to integrating text and price information. In this work, we statistic common financial metrics and make a special dataset based on these metrics. Then, we introduce a knowledge-enhanced financial volatility prediction method (KeFVP) to inject knowledge of financial metrics into text comprehension by knowledge-enhanced adaptive pre-training (KePt) and effectively incorporating text and price information by introducing a conditional time series prediction module. We conduct extensive experiments on three real-world public datasets, and the results indicate that KeFVP is effective and outperforms all the state-of-the-art methods.