Weixin Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Re-examining the Role of Schema Linking in Text-to-SQL
Wenqiang Lei | Weixin Wang | Zhixin Ma | Tian Gan | Wei Lu | Min-Yen Kan | Tat-Seng Chua
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In existing sophisticated text-to-SQL models, schema linking is often considered as a simple, minor component, belying its importance. By providing a schema linking corpus based on the Spider text-to-SQL dataset, we systematically study the role of schema linking. We also build a simple BERT-based baseline, called Schema-Linking SQL (SLSQL) to perform a data-driven study. We find when schema linking is done well, SLSQL demonstrates good performance on Spider despite its structural simplicity. Many remaining errors are attributable to corpus noise. This suggests schema linking is the crux for the current text-to-SQL task. Our analytic studies provide insights on the characteristics of schema linking for future developments of text-to-SQL tasks.