This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
WeiqingWang
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Detecting fraudulent online text is essential, as these manipulative messages exploit human greed, deceive individuals, and endanger societal security. Currently, this task remains under-explored on the Chinese web due to the lack of a comprehensive dataset of Chinese fraudulent texts. However, creating such a dataset is challenging because it requires extensive annotation within a vast collection of normal texts. Additionally, the creators of fraudulent webpages continuously update their tactics to evade detection by downstream platforms and promote fraudulent messages. To this end, this work firstly presents the comprehensive long-term dataset of Chinese fraudulent texts collected over 12 months, consisting of 59,106 entries extracted from billions of web pages. Furthermore, we design and provide a wide range of baselines, including large language model-based detectors, and pre-trained language model approaches. The necessary dataset and benchmark codes for further research are available via https://github. com/xuemingxxx/ChiFraud.
Continually updating model-based indexes in generative retrieval with new documents remains challenging, as full retraining is computationally expensive and impractical under resource constraints. We propose MixLoRA-DSI, a novel framework that combines an expandable mixture of Low-Rank Adaptation experts with a layer-wise out-of-distribution (OOD)-driven expansion strategy. Instead of allocating new experts for each new corpus, our proposed expansion strategy enables sublinear parameter growth by selectively introducing new experts only when significant number of OOD documents are detected. Experiments on NQ320k and MS MARCO Passage demonstrate that MixLoRA-DSI outperforms full-model update baselines, with minimal parameter overhead and substantially lower training costs.
Sociocultural norms serve as guiding principles for personal conduct in social interactions within a particular society or culture. The study of norm discovery has seen significant development over the last few years, with various interesting approaches. However, it is difficult to adopt these approaches to discover norms in a new culture, as they rely either on human annotations or real-world dialogue contents. This paper presents a robust automatic norm discovery pipeline, which utilizes the cultural knowledge of GPT-3.5 Turbo (ChatGPT) along with several social factors. By using these social factors and ChatGPT, our pipeline avoids the use of human dialogues that tend to be limited to specific scenarios, as well as the use of human annotations that make it difficult and costly to enlarge the dataset. The resulting database - Multi-cultural Norm Base (MNB) - covers 6 distinct cultures, with over 150k sociocultural norm statements in total. A state-of-the-art Large Language Model (LLM), Llama 3, fine-tuned with our proposed dataset, shows remarkable results on various downstream tasks, outperforming models fine-tuned on other datasets significantly.
While large multimodal models (LMMs) have obtained strong performance on many multimodal tasks, they may still hallucinate while generating text. Their performance on detecting salient features from visual data is also unclear. In this paper, we develop a framework to generate faithful and salient text from mixed-modal data, which includes images and structured data ( represented in knowledge graphs or tables). Specifically, we train a vision critic model to identify hallucinated and non-salient features from the image modality. The critic model also generates a list of salient image features. This information is used in the post editing step to improve the generation quality. Experiments on two datasets show that our framework improves LMMs’ generation quality on both faithfulness and saliency, outperforming recent techniques aimed at reducing hallucination. The dataset and code are available at https://github.com/TahsinaHashem/FaithD2T.
Semantic parsing is a technique aimed at constructing a structured representation of the meaning of a natural-language question. Recent advances in language models trained on code have shown superior performance in generating these representations compared to language models trained solely on natural language text. The existing fine-tuned neural semantic parsers are vulnerable to adversarial attacks on natural-language inputs. While it has been established that the robustness of smaller semantic parsers can be enhanced through adversarial training, this approach is not feasible for large language models in real-world scenarios, as it requires both substantial computational resources and expensive human annotation on in-domain semantic parsing data. This paper presents the first empirical study on the adversarial robustness of a prompt-based semantic parser based on CODEX, a stateof-the-art (SOTA) language model trained on code. Our results demonstrate that the large language model of code is vulnerable to carefully crafted adversarial examples. To overcome this challenge, we propose methods for enhancing robustness without requiring substantial amounts of labelled data or intensive computational resources.
Knowledge Graph (KG)-to-Text generation aims at generating fluent natural-language text that accurately represents the information of a given knowledge graph. While significant progress has been made in this task by exploiting the power of pre-trained language models (PLMs) with appropriate graph structure-aware modules, existing models still fall short of generating faithful text, especially when the ground-truth natural-language text contains additional information that is not present in the graph. In this paper, we develop a KG-to-text generation model that can generate faithful natural-language text from a given graph, in the presence of noisy reference text. Our framework incorporates two core ideas: Firstly, we utilize contrastive learning to enhance the model’s ability to differentiate between faithful and hallucinated information in the text, thereby encouraging the decoder to generate text that aligns with the input graph. Secondly, we empower the decoder to control the level of hallucination in the generated text by employing a controllable text generation technique. We evaluate our model’s performance through the standard quantitative metrics as well as a ChatGPT-based quantitative and qualitative analysis. Our evaluation demonstrates the superior performance of our model over state-of-the-art KG-to-text models on faithfulness.