Weikai Lu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SEA: Low-Resource Safety Alignment for Multimodal Large Language Models via Synthetic Embeddings
Weikai Lu | Hao Peng | Huiping Zhuang | Cen Chen | Ziqian Zeng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Large Language Models (MLLMs) have serious security vulnerabilities. While safety alignment using multimodal datasets consisting of text and data of additional modalities can effectively enhance MLLM’s security, it is costly to construct these datasets. Existing low-resource security alignment methods, including textual alignment, have been found to struggle with the security risks posed by additional modalities. To address this, we propose Synthetic Embedding augmented safety Alignment (SEA), which optimizes embeddings of additional modality through gradient updates to expand textual datasets. This enables multimodal safety alignment training even when only textual data is available. Extensive experiments on image, video, and audio-based MLLMs demonstrate that SEA can synthesize a high-quality embedding on a single RTX3090 GPU within 24 seconds. SEA significantly improves the security of MLLMs when faced with threats from additional modalities. To assess the security risks introduced by video and audio, we also introduced a new benchmark called VA-SafetyBench. High attack success rates across multiple MLLMs validate its challenge. Our code and data will be available at https://github.com/ZeroNLP/SEA.

pdf bib
SDD: Self-Degraded Defense against Malicious Fine-tuning
ZiXuan Chen | Weikai Lu | Xin Lin | Ziqian Zeng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Open-source Large Language Models (LLMs) often employ safety alignment methods to resist harmful instructions. However, recent research shows that maliciously fine-tuning these LLMs on harmful data can easily bypass these safeguards. To counter this, we theoretically uncover why malicious fine-tuning succeeds and identify potential defense strategies. Building on the theoretical analysis, we introduce the Self-Degraded Defense (SDD) framework. SDD encourages LLMs to produce high-quality but irrelevant responses to harmful prompts. When attackers attempt malicious fine-tuning, the general capability of the LLM aligned by SDD will significantly decrease, rendering it incapable of following harmful instructions. Our experimental results confirm SDD’s effectiveness against such attacks.Our code is available at https://github.com/ZeroNLP/SDD.