This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
WeijiangYu
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large Vision-Language Models (LVLMs) have shown exceptional performance in multimodal tasks, but their effectiveness in complex visual reasoning is still constrained, especially when employing Chain-of-Thought prompting techniques. In this paper, we propose VReST, a novel training-free approach that enhances Reasoning in LVLMs through Monte Carlo Tree Search and Self-Reward mechanisms. VReST meticulously traverses the reasoning landscape by establishing a search tree, where each node encapsulates a reasoning step, and each path delineates a comprehensive reasoning sequence. Our innovative multimodal Self-Reward mechanism assesses the quality of reasoning steps by integrating the utility of sub-questions, answer correctness, and the relevance of vision-language clues, all without the need for additional models. VReST surpasses current prompting methods and secures state-of-the-art performance across three multimodal mathematical reasoning benchmarks. Furthermore, it substantiates the efficacy of test-time scaling laws in multimodal tasks, offering a promising direction for future research.
Entity alignment (EA), critical for knowledge graph (KG) integration, identifies equivalent entities across different KGs. Traditional methods often face challenges in semantic understanding and scalability. The rise of language models (LMs), particularly large language models (LLMs), has provided powerful new strategies. This paper systematically reviews LM-driven EA methods, proposing a novel taxonomy that categorizes methods in three key stages: data preparation, feature embedding, and alignment. We further summarize key benchmarks, evaluation metrics, and discuss future directions. This paper aims to provide researchers and practitioners with a clear and comprehensive understanding of how language models reshape the field of entity alignment.
To tackle complex tasks in real-world scenarios, more researchers are focusing on Omni-MLLMs, which aim to achieve omni-modal understanding and generation. Beyond the constraints of any specific non-linguistic modality, Omni-MLLMs map various non-linguistic modalities into the embedding space of LLMs and enable the interaction and understanding of arbitrary combinations of modalities within a single model. In this paper, we systematically investigate relevant research and provide a comprehensive survey of Omni-MLLMs. Specifically, we first explain the four core components of Omni-MLLMs for unified multi-modal modeling with a meticulous taxonomy that offers novel perspectives. Then, we introduce the effective integration achieved through two-stage training and discuss the corresponding datasets as well as evaluation. Furthermore, we summarize the main challenges of current Omni-MLLMs and outline future directions. We hope this paper serves as an introduction for beginners and promotes the advancement of related research. Resources have been made publicly availableat https://github.com/threegold116/Awesome-Omni-MLLMs.
Retrieval-augmented generation integrates the capabilities of large language models with relevant information retrieved from an extensive corpus, yet encounters challenges when confronted with real-world noisy data. One recent solution is to train a filter module to find relevant content but only achieve suboptimal noise compression. In this paper, we propose to introduce the information bottleneck theory into retrieval-augmented generation. Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output, while minimizing the mutual information between compression and retrieved passage. In addition, we derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations, the selection of supervised fine-tuning data, and the construction of reinforcement learning rewards. Experimental results demonstrate that our approach achieves significant improvements across various question answering datasets, not only in terms of the correctness of answer generation but also in the conciseness with 2.5% compression rate.
Reasoning, a fundamental cognitive process integral to human intelligence, has garnered substantial interest within artificial intelligence.Notably, recent studies have revealed that chain-of-thought prompting significantly enhances LLM’s reasoning capabilities, which attracts widespread attention from both academics and industry.In this paper, we systematically investigate relevant research, summarizing advanced methods through a meticulous taxonomy that offers novel perspectives.Moreover, we delve into the current frontiers and delineate the challenges and future directions, thereby shedding light on future research.Furthermore, we engage in a discussion about open questions.We hope this paper serves as an introduction for beginners and fosters future research.Resources have been made publicly available at https://github.com/zchuz/CoT-Reasoning-Survey
Grasping the concept of time is a fundamental facet of human cognition, indispensable for truly comprehending the intricacies of the world.Previous studies typically focus on specific aspects of time, lacking a comprehensive temporal reasoning benchmark.To address this, we propose TimeBench, a comprehensive hierarchical temporal reasoning benchmark that covers a broad spectrum of temporal reasoning phenomena.TimeBench provides a thorough evaluation for investigating the temporal reasoning capabilities of large language models.We conduct extensive experiments on GPT-4, LLaMA2, and other popular LLMs under various settings.Our experimental results indicate a significant performance gap between the state-of-the-art LLMs and humans, highlighting that there is still a considerable distance to cover in temporal reasoning.Besides, LLMs exhibit capability discrepancies across different reasoning categories.Furthermore, we thoroughly analyze the impact of multiple aspects on temporal reasoning and emphasize the associated challenges.We aspire for TimeBench to serve as a comprehensive benchmark, fostering research in temporal reasoning.Code and data are available at https://github.com/zchuz/TimeBench.
Large language models (LLMs) have demonstrated strong reasoning capabilities.Nevertheless, they still suffer from factual errors when tackling knowledge-intensive tasks.Retrieval-augmented reasoning represents a promising approach.However, significant challenges still persist, including inaccurate and insufficient retrieval for complex questions, as well as difficulty in integrating multi-source knowledge.To address this, we propose Beam Aggregation Reasoning (BeamAggR), a reasoning framework for knowledge-intensive multi-hop QA.BeamAggR explores and prioritizes promising answers at each hop of question.Concretely, we parse the complex questions into trees, which include atom and composite questions, followed by bottom-up reasoning.For atomic questions, the LLM conducts reasoning on multi-source knowledge to get answer candidates.For composite questions, the LLM combines beam candidates, explores multiple reasoning paths through probabilistic aggregation, and prioritizes the most promising trajectory.Extensive experiments on four open-domain multi-hop reasoning datasets show that our method significantly outperforms SOTA methods by 8.5%.Furthermore, our analysis reveals that BeamAggR elicits better knowledge collaboration and answer aggregation.
Despite the impressive performance on information-seeking tasks, large language models (LLMs) still struggle with hallucinations. Attributed LLMs, which augment generated text with in-line citations, demonstrate potential in mitigating hallucinations and improving verifiability. However, current approaches suffer from suboptimal citation quality due to their reliance on in-context learning. Furthermore, the practice of merely citing document identifiers complicates the process for users to pinpoint specific supporting evidence. In this work, we introduce FRONT, a training framework that teaches LLMs to generate Fine-grained grounded citations. By initially grounding fine-grained supporting quotes, which then guide the generation process, these quotes not only provide supervision signals to improve citation quality but also serve as fine-grained attributions. Experiments on the ALCE benchmark demonstrate the efficacy of FRONT in generating superior grounded responses and highly supportive citations. With LLaMA-2-7B, the framework significantly outperforms all the baselines, achieving an average of 14.21% improvement in citation quality across all datasets, even surpassing ChatGPT.
The recent algorithms for math word problems (MWP) neglect to use outside knowledge not present in the problems. Most of them only capture the word-level relationship and ignore to build hierarchical reasoning like the human being for mining the contextual structure between words and sentences. In this paper, we propose a Reasoning with Pre-trained Knowledge and Hierarchical Structure (RPKHS) network, which contains a pre-trained knowledge encoder and a hierarchical reasoning encoder. Firstly, our pre-trained knowledge encoder aims at reasoning the MWP by using outside knowledge from the pre-trained transformer-based models. Secondly, the hierarchical reasoning encoder is presented for seamlessly integrating the word-level and sentence-level reasoning to bridge the entity and context domain on MWP. Extensive experiments show that our RPKHS significantly outperforms state-of-the-art approaches on two large-scale commonly-used datasets, and boosts performance from 77.4% to 83.9% on Math23K, from 75.5 to 82.2% on Math23K with 5-fold cross-validation and from 83.7% to 89.8% on MAWPS. More extensive ablations are shown to demonstrate the effectiveness and interpretability of our proposed method.