Wei-Tsung Kao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Is BERT a Cross-Disciplinary Knowledge Learner? A Surprising Finding of Pre-trained Models’ Transferability
Wei-Tsung Kao | Hung-yi Lee
Findings of the Association for Computational Linguistics: EMNLP 2021

This paper investigates whether the power of the models pre-trained on text data, such as BERT, can be transferred to general token sequence classification applications. To verify pre-trained models’ transferability, we test the pre-trained models on text classification tasks with meanings of tokens mismatches, and real-world non-text token sequence classification data, including amino acid, DNA, and music. We find that even on non-text data, the models pre-trained on text converge faster, perform better than the randomly initialized models, and only slightly worse than the models using task-specific knowledge. We also find that the representations of the text and non-text pre-trained models share non-trivial similarities.